Lymphopenia is considered one of the most characteristic clinical features of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 infects host cells via the interaction of its spike protein with the human angiotensin-converting enzyme 2 (hACE2) receptor. Since T lymphocytes display a very low expression level of hACE2, a novel receptor might be involved in the entry of SARS-CoV-2 into T cells. The transmembrane glycoprotein CD147 is highly expressed by activated T lymphocytes, and was recently proposed as a probable route for SARS-CoV-2 invasion. To understand the molecular basis of the potential interaction of SARS-CoV-2 to CD147, we have investigated the binding of the viral spike protein to this receptor in-silico. The results showed that this binding is dominated by electrostatic interactions involving residues Arg403, Asn481, and the backbone of Gly502. The overall binding arrangement shows the CD147 C-terminal domain interacting with the spike external subdomain in the grove between the short antiparallel b strands, b1' and b2', and the small helix a1'. This proposed interaction was further confirmed using MD simulation and binding free energy calculation. These data contribute to a better understanding of the mechanism of infection of SARS-CoV-2 to T lymphocytes and could provide valuable insights for the rational design of adjuvant treatment for COVID-19.
Sigma receptor is a transmembrane non‐GPCR protein expressed mainly in the endoplasmic reticulum membrane associated with mitochondria. It is classified into two types: Sigma‐1 (S1R) and Sigma‐2 (S2R) based on their biological functions. S1R has been implicated in many neurological disorders such as anxiety, schizophrenia, and depression. Therefore, S1R ligands possess a variety of potential clinical applications with a great interest in the treatment of neuropathic pain. In this study, we report the discovery of a novel lead compound for S1R binding, based on the thiazolidine‐2,4‐dione nucleus. We have explored hydrophobic groups of different sizes on both sides of the five‐membered ring scaffold guided by the crystal structure of S1R. Six compounds showed more than 50% displacement of the radioligand at 10 µM concentration with compound 6c resulting in 100% displacement and a Ki of 95.5 nM. Moreover, compounds 6c and 6e showed a significant selectivity over S2R. In addition, molecular docking predicted that all the compounds showed the critical salt bridge with Glu172 with variable degrees of π‐stacking interaction with Tyr103. Upon optimization, this series of compounds could represent potential clinically useful S1R ligands for pain management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.