This paper presents a fast and simple algorithm to extract the maximum power under non-uniform weather from the photovoltaic (PV) based generation systems. The proposed algorithm’s three stages are the scanning stage, the tracking stage, the detecting and avoiding the hidden points stage. The hidden points are caused by a transition between the global maximum power point (GMPP) and a local maximum power point (LMPP) when the partial shading conditions (PSCs) are changed. This transition cannot be observed by monitoring only the power difference of the PV generation system. Simulation results with comparisons to other algorithms developed for global maximum power point tracking (GMPPT) under PSCs are provided to clarify and show the effectiveness of the proposed GMPPT algorithm. The average tracking speed of the proposed algorithm is two times faster than the compared MPPT algorithms, with about 2% more power generated with no additional cost. Moreover, the proposed GMPPT algorithm is implemented in real-time using National Instruments (NI) CompactRIO in field-programmable gate array (FPGA) mode to confirm the applicability of the proposed work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.