The knowledge of the service life of polymers under cyclic loading, widely used in industrial applications, is required and usually based on the use of methods necessitating an accurate prediction of the stabilized cycle. This implies a large computation time using the Finite Element Method (FEM) since it requires a large number of cycles for polymers. To alleviate this difficulty, a model order reduction method can be used. In this paper, a mixed strategy is investigated. Through the Proper Generalized Decomposition Method (PGD) framework, this strategy combines the Fast Fourier Transform (FFT) to create a priori time basis and the FEM to compute the related spatial modes. The method is applied to 3D thermal problems under cyclic loadings. The robustness of the proposed strategy is discussed for various boundary conditions, multi-times, and different cyclic loadings. A large time saving is obtained proving the interest of this alternative strategy to deal with fatigue simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.