This paper presents numerical solutions for the space-and time-fractional Korteweg-de Vries equation (KdV for short) using the variational iteration method. The space-and time-fractional derivatives are described in the Caputo sense. In this method, general Lagrange multipliers are introduced to construct correction functionals for the problems. The multipliers in the functionals can be identified optimally via variational theory. The iteration method, which produces the solutions in terms of convergent series with easily computable components, requiring no linearization or small perturbation. The numerical results show that the approach is easy to implement and accurate when applied to space-and time-fractional KdV equations. The method introduces a promising tool for solving many space-time fractional partial differential equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.