This review examines studies of intra-operative contrast-enhanced ultrasound (CEUS) and its emerging role and advantages in robotic-assisted nephron-sparing surgery. Contrast-enhanced ultrasound is a technology that combines the use of second-generation contrast agents consisting of microbubbles with existent ultrasound techniques. Until now, this novel technology has aided surgeons with procedures involving the liver. However, with recent advances in the CEUS technique and the introduction of robotics in nephron-sparing surgery, CEUS has proven to be efficacious in answering several clinical questions with respect to the kidneys. In addition, the introduction of the microbubble-based contrast agents has increased the image quality and signal uptake by the ultrasound probe. This has led to better, enhanced scanning of the macro and microvasculature of the kidneys, making CEUS a powerful diagnostic modality. This imaging method is capable of further lowering the learning curve and warm ischemia time (WIT) during robotic-assisted nephron-sparing surgery, with its increased level of capillary perfusion and imaging. CEUS has the potential to increase the sensitivity and specificity of intra-operative images, and can significantly improve the outcome of robotic-assisted nephron-sparing surgery by increasing the precision and diagnostic insight of the surgeon. The purpose of this article is to review the practical and potential uses of CEUS as an intra-operative imaging technique during robotic-assisted nephron-sparing surgery.
Nephron-sparing surgery for the removal of small renal masses delivers equivalent oncological outcomes and better functional outcomes compared with those associated with radical nephrectomy. All contemporary partial nephrectomy techniques including open, laparoscopic and robotic approaches involve the use of hilar clamping in order to facilitate haemostasis, and to enable accurate tumour excision and parenchymal reconstruction. Zero ischaemia was subsequently introduced as a technique to eliminate the renal ischaemia induced by hilar clamping. Following the introduction of zero ischaemia techniques, researchers have arbitrarily applied this term to techniques ranging from no use of clamping to selective clamping of renal arteries and/or veins, or their branches. Substantial variations exist in the way that zero ischaemia and other renal preservation techniques are described in the literature. Similarly, further diversity exists in the measurement and reporting of functional outcomes after surgery. The introduction of standard and reproducible classifications or guidelines will ensure consistency and uniformity. Establishing consensus on the terminology used to describe techniques and functional outcomes will not only facilitate improved communication and surgical practice, but will also enable critical appraisal of surgical techniques.
ObjectiveThe paper describes novel real‐time ‘in situ mapping’ and ‘sequential occlusion angiography’ to facilitate selective ischaemia robotic partial nephrectomy (RPN) using intraoperative contrast enhanced ultrasound scan (CEUS).Materials and methodsData were collected and assessed for 60 patients (61 tumours) between 2009 and 2013. 31 (50.8%) tumours underwent ‘Global Ischaemia’, 27 (44.3%) underwent ‘Selective Ischaemia’ and 3 (4.9%) were removed ‘Off Clamp Zero Ischaemia’. Demographics, operative variables, complications, renal pathology and outcomes were assessed.ResultsMedian PADUA score was 9 (range 7–10). The mean warm ischaemia time in selective ischaemia was less and statistically significant than in global ischaemia (17.1 and 21.4, respectively). Mean operative time was 163 min. Postoperative complications (n = 10) included three (5%) Clavien grade 3 or above. Malignancy was demonstrated in 47 (77%) with negative margin in 43 (91.5%) and positive margin in four (8.5%). Long‐term decrease in eGFR post selective ischaemia robotic partial nephrectomy was less compared with global ischaemia (four and eight, respectively) but not statistically significant.ConclusionsThis technique is safe, feasible and cost‐effective with comparable perioperative outcomes. The technical aspects elucidate the role of intraoperative CEUS to facilitate and ascertain selective ischaemia. Further work is required to demonstrate long‐term oncological outcomes. © 2016 The Authors. The International Journal of Medical Robotics and Computer Assisted Surgery published by John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.