Research and development of desalination technologies are becoming highly important because of the rapid increase in freshwater demand. Researchers are continually working on improving the existing desalination technologies and exploring new methods and ideas to desalinate salty water in order to come up with cost-effective systems. Comparisons between different renewable powered desalination technologies were mainly based on different system capacity, energy source system, feed-water salinity and system components. This makes the economical comparison almost impossible. There is an existing gap in having an economical comparison to different renewable energy powered desalination systems with the same basics such as availability of renewable and water resources. This research is an attempt to provide a systematic methodology to obtain the most cost-effective renewable energy powered desalination system.
Research and development of desalination technologies are becoming highly critical because of the rapid increase in freshwater demand. Researchers are continually working on improving the existing desalination technologies and exploring new methods and ideas to desalinate salty water. The main goal is to come up with cost-effective systems. Renewable energy desalination is becoming an attractive option nowadays because of its viability of producing fresh water, technology improvement continuation, limitation of conventional sources and compatibility between water needs and renewable resources availability. More importantly, using renewable energy to power desalination systems is extremely important for reducing global emissions and protecting the environment. This research is an attempt to provide a systematic methodology for determining the most cost-effective combination of renewable energy powered reverse osmosis desalination system for a given location and required capacity. Two combinations are compared which are RO-Wind and RO-PV. Results show that for Dhahran, Saudi Arabia cost of water produced by RO-Wind is 1.
A fully wicked ground source heat pipe (GSHP) is numerically employed and simulated to transfer thermal energy from the subsurface to ground surface pavements to reduce the environmental temperature fluctuations in the pavement, thereby reducing thermal stresses and increasing pavement life. The GSHP can also reduce or eliminate snow and ice buildup on pavement surfaces. Each single GSHP was modeled in a two-dimensional axisymmetric cross-section using COMSOL software, which employs a finite element method. The modeled GSHP consisted of two parts: a disk shape buried below the pavement surface, connected to a cylindrical part embedded in a vertical underground borehole. The GSHP finite element model was validated against published experimental heat pipe data. The simulation results demonstrated that the thermal behavior of the heat pipe system during the cold season could reduce the temperature fluctuations on the pavement surface in six various climate zones. The addition of insulation along the vertical length of the heat pipe was found to significantly reduce heat loss between the heated and unheated pavement surfaces. The low thermal conductivity of the pavement material decreases the performance of the GSHP system. Finally, the maximum-minimum normalization method was applied to the parametric analysis to normalize and compare results for future use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.