Background Trabecular bone texture (TBT) analysis has been identified as an imaging biomarker that provides information on trabecular bone changes due to knee osteoarthritis (KOA). In parallel with the improvement in medical imaging technologies, machine learning methods have received growing interest in the scientific osteoarthritis community to potentially provide clinicians with prognostic data from conventional knee X-ray datasets, in particular from the Osteoarthritis Initiative (OAI) and the Multicenter Osteoarthritis Study (MOST) cohorts. Patients and methods This study included 1888 patients from OAI and 683 patients from MOST cohorts. Radiographs were automatically segmented to determine 16 regions of interest. Patients with an early stage of OA risk, with Kellgren and Lawrence (KL) grade of 1 < KL < 4, were selected. The definition of OA progression was an increase in the OARSI medial joint space narrowing (mJSN) grades over 48 months in OAI and 60 months in MOST. The performance of the TBT-CNN model was evaluated and compared to well-known prediction models using logistic regression. Results The TBT-CNN model was predictive of the JSN progression with an area under the curve (AUC) up to 0.75 in OAI and 0.81 in MOST. The predictive ability of the TBT-CNN model was invariant with respect to the acquisition modality or image quality. The prediction models performed significantly better with estimated KL (KLprob) grades than those provided by radiologists. TBT-based models significantly outperformed KLprob-based models in MOST and provided similar performances in OAI. In addition, the combined model, when trained in one cohort, was able to predict OA progression in the other cohort. Conclusion The proposed combined model provides a good performance in the prediction of mJSN over 4 to 6 years in patients with relevant KOA. Furthermore, the current study presents an important contribution in showing that TBT-based OA prediction models can work with different databases.
Background Trabecular bone texture analysis (TBTA) has been identified as an imaging biomarker that provides information on trabecular bone changes due to knee osteoarthritis (KOA). Consequently, it is important to conduct a comprehensive review that would permit a better understanding of this unfamiliar image analysis technique in the area of KOA research. We examined how TBTA, conducted on knee radiographs, is associated to (i) KOA incidence and progression, (ii) total knee arthroplasty, and (iii) KOA treatment responses. The primary aims of this study are twofold: to provide (i) a narrative review of the studies conducted on radiographic KOA using TBTA, and (ii) a viewpoint on future research priorities. Method Literature searches were performed in the PubMed electronic database. Studies published between June 1991 and March 2020 and related to traditional and fractal image analysis of trabecular bone texture (TBT) on knee radiographs were identified. Results The search resulted in 219 papers. After title and abstract scanning, 39 studies were found eligible and then classified in accordance to six criteria: cross-sectional evaluation of osteoarthritis and non-osteoarthritis knees, understanding of bone microarchitecture, prediction of KOA progression, KOA incidence, and total knee arthroplasty and association with treatment response. Numerous studies have reported the relevance of TBTA as a potential bioimaging marker in the prediction of KOA incidence and progression. However, only a few studies have focused on the association of TBTA with both OA treatment responses and the prediction of knee joint replacement. Conclusion Clear evidence of biological plausibility for TBTA in KOA is already established. The review confirms the consistent association between TBT and important KOA endpoints such as KOA radiographic incidence and progression. TBTA could provide markers for enrichment of clinical trials enhancing the screening of KOA progressors. Major advances were made towards a fully automated assessment of KOA.
Lacking disease-modifying osteoarthritis drugs (DMOADs) for knee osteoarthritis (KOA), Total Knee Arthroplasty (TKA) is often considered an important clinical outcome. Thus, it is important to determine the most relevant factors that are associated with the risk of TKA. The present study aims to develop a model based on a combination of X-ray trabecular bone texture (TBT) analysis, and clinical and radiological information to predict TKA risk in patients with or at risk of developing KOA. This study involved 4382 radiographs, obtained from the OsteoArthritis Initiative (OAI) cohort. Cases were defined as patients with TKA on at least one knee prior to the 108-month follow-up time point and controls were defined as patients who had never undergone TKA. The proposed TKA-risk prediction model, combining TBT parameters and Kellgren–Lawrence (KL) grades, was performed using logistic regression. The proposed model achieved an AUC of 0.92 (95% Confidence Interval [CI] 0.90, 0.93), while the KL model achieved an AUC of 0.86 (95% CI 0.84, 0.86; p < 0.001). This study presents a new TKA prediction model with a good performance permitting the identification of at risk patient with a good sensitivy and specificity, with a 60% increase in TKA case prediction as reflected by the recall values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.