Artificial Neural Networks (ANNs) are increasingly used for discrete choice analysis. But, at present, it is unknown what sample size requirements are appropriate when using ANNs in this particular context. This paper fills this knowledge gap: we empirically establish a rule-of-thumb for ANNbased discrete choice analysis based on analyses of synthetic and real data. To investigate the effect of complexity of the data generating process on the minimum required sample size, we conduct extensive Monte Carlo analyses using a series of different model specifications with different levels of model complexity, including RUM and RRM models, with and without random taste parameters. Based on our analyses we advise to use a minimum sample size of fifty times the number of weights in the ANN; it should be noted, that the number of weights is generally much larger than the number of parameters in a discrete choice model. This rule-of-thumb is considerably more conservative than the rule-of-thumb that is most often used in the ANN community, which advises to use at least ten times the number of weights.
Heart rate variability (HRV) has become a marker for various health and disease conditions. Photoplethysmography (PPG) sensors integrated in wearable devices such as smart watches and phones are widely used to measure heart activities. HRV requires accurate estimation of time interval between consecutive peaks in the PPG signal. However, PPG signal is very sensitive to motion artefact which may lead to poor HRV estimation if false peaks are detected. In this Letter, the authors propose a probabilistic approach based on Bayesian learning to better estimate HRV from PPG signal recorded by wearable devices and enhance the performance of the automatic multi scale-based peak detection (AMPD) algorithm used for peak detection. The authors’ experiments show that their approach enhances the performance of the AMPD algorithm in terms of number of HRV related metrics such as sensitivity, positive predictive value, and average temporal resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.