<b><i>Background:</i></b> The aim of this study is to systematically review the literature to summarize the evidence surrounding the clinical utility of artificial intelligence (AI) in the field of mammography. Databases from PubMed, IEEE Xplore, and Scopus were searched for relevant literature. Studies evaluating AI models in the context of prediction and diagnosis of breast malignancies that also reported conventional performance metrics were deemed suitable for inclusion. From 90 unique citations, 21 studies were considered suitable for our examination. Data was not pooled due to heterogeneity in study evaluation methods. <b><i>Summary:</i></b> Three studies showed the applicability of AI in reducing workload. Six studies demonstrated that AI can aid in diagnosis, with up to 69% reduction in false positives and an increase in sensitivity ranging from 84 to 91%. Five studies show how AI models can independently mark and classify suspicious findings on conventional scans, with abilities comparable with radiologists. Seven studies examined AI predictive potential for breast cancer and risk score calculation. <b><i>Key Messages:</i></b> Despite limitations in the current evidence base and technical obstacles, this review suggests AI has marked potential for extensive use in mammography. Additional works, including large-scale prospective studies, are warranted to elucidate the clinical utility of AI.
Purpose: Machine learning (ML) and deep learning (DL) can be utilized in radiology to help diagnosis and for predicting management and outcomes based on certain image findings. DL utilizes convolutional neural networks (CNN) and may be used to classify imaging features. The objective of this literature review is to summarize recent publications highlighting the key ways in which ML and DL may be applied in radiology, along with solutions to the problems that this implementation may face. Material and methods:Twenty-one publications were selected from the primary literature through a PubMed search.The articles included in our review studied a range of applications of artificial intelligence in radiology. Results:The implementation of artificial intelligence in diagnostic and interventional radiology may improve image analysis, aid in diagnosis, as well as suggest appropriate interventions, clinical predictive modelling, and trainee education. Potential challenges include ethical concerns and the need for appropriate datasets with accurate labels and large sample sizes to train from. Additionally, the training data should be representative of the population to which the future ML platform will be applicable. Finally, machines do not disclose a statistical rationale when expounding on the task purpose, making them difficult to apply in medical imaging. Conclusions:As radiologists report increased workload, utilization of artificial intelligence may provide improved outcomes in medical imaging by assisting, rather than guiding or replacing, radiologists. Further research should be done on the risks of AI implementation and how to most accurately validate the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.