Background In response to COVID-19, the informatics community united to aggregate as much clinical data as possible to characterize this new disease and reduce its impact through collaborative analytics. The National COVID Cohort Collaborative (N3C) is now the largest publicly available HIPAA limited dataset in US history with over 6.4 million patients and is a testament to a partnership of over 100 organizations. Methods We developed a pipeline for ingesting, harmonizing, and centralizing data from 56 contributing data partners using four federated Common Data Models. N3C Data quality (DQ) review involves both automated and manual procedures. In the process, several DQ heuristics were discovered in our centralized context, both within the pipeline and during downstream project-based analysis. Feedback to the sites led to many local and centralized DQ improvements. Results Beyond well-recognized DQ findings, we discovered 15 heuristics relating to source CDM conformance, demographics, COVID tests, conditions, encounters, measurements, observations, coding completeness and fitness for use. Of 56 sites, 37 sites (66%) demonstrated issues through these heuristics. These 37 sites demonstrated improvement after receiving feedback. Discussion We encountered site-to-site differences in DQ which would have been challenging to discover using federated checks alone. We have demonstrated that centralized DQ benchmarking reveals unique opportunities for data quality improvement that will support improved research analytics locally and in aggregate. Conclusion By combining rapid, continual assessment of DQ with a large volume of multi-site data, it is possible to support more nuanced scientific questions with the scale and rigor that they require.
As the COVID-19 pandemic unfolds, radiology imaging is playing an increasingly vital role in determining therapeutic options, patient management, and research directions. Publicly available data are essential to drive new research into disease etiology, early detection, and response to therapy. In response to the COVID-19 crisis, the National Cancer Institute (NCI) has extended the Cancer Imaging Archive (TCIA) to include COVID-19 related images. Rural populations are one population at risk for underrepresentation in such public repositories. We have published in TCIA a collection of radiographic and CT imaging studies for patients who tested positive for COVID-19 in the state of Arkansas. A set of clinical data describes each patient including demographics, comorbidities, selected lab data and key radiology findings. These data are cross-linked to SARS-COV-2 cDNA sequence data extracted from clinical isolates from the same population, uploaded to the GenBank repository. We believe this collection will help to address population imbalance in COVID-19 data by providing samples from this normally underrepresented population.
Objectives: The time-dependent study of comorbidities provides insight into disease progression and trajectory. We hypothesize that understanding longitudinal disease characteristics can lead to more timely intervention and improve clinical outcomes. As a first step, we developed an efficient and easy-to-install toolkit, the Time-based Elixhauser Comorbidity Index (TECI), which pre-calculates time-based Elixhauser comorbidities and can be extended to common data models (CDMs). Methods: A Structured Query Language (SQL)-based toolkit, TECI, was built to pre-calculate time-specific Elixhauser comorbidity indices using data from a clinical data repository (CDR). Then it was extended to the Informatics for Integrating Biology and the Bedside (I2B2) and Observational Medical Outcomes Partnership (OMOP) CDMs. Results: At the University of Arkansas for Medical Sciences (UAMS), the TECI toolkit was successfully installed to compute the indices from CDR data, and the scores were integrated into the I2B2 and OMOP CDMs. Comorbidity scores calculated by TECI were validated against: scores available in the 2015 quarter 1-3 Nationwide Readmissions Database (NRD) and scores calculated using the comorbidities using a previously validated algorithm on the 2015 quarter 4 NRD. Furthermore, TECI identified 18,846 UAMS patients that had changes in comorbidity scores over time (year 2013 to 2019). Comorbidities for a random sample of patients were independently reviewed, and in all cases, the results were found to be 100% accurate. Conclusions: TECI facilitates the study of comorbidities within a time-dependent context, allowing better understanding of disease associations and trajectories, which has the potential to improve clinical outcomes.
Objectives: To facilitate clinical and translational research, imaging and non-imaging clinical data from multiple disparate systems must be aggregated for analysis. Study participant records from various sources are linked together and to patient records when possible to address research questions while ensuring patient privacy. This paper presents a novel tool that pseudonymizes participant identifiers (PIDs) using a researcher-driven automated process that takes advantage of application-programming interface (API) and the Perl Open-Source Digital Imaging and Communications in Medicine Archive (POSDA) to further de-identify PIDs. The tool, on-demand cohort and API participant identifier pseudonymization (O-CAPP), employs a pseudonymization method based on the type of incoming research data. Methods: For images, pseudonymization of PIDs is done using API calls that receive PIDs present in Digital Imaging and Communications in Medicine (DICOM) headers and returns the pseudonymized identifiers. For non-imaging clinical research data, PIDs provided by study principal investigators (PIs) are pseudonymized using a nightly automated process. The pseudonymized PIDs (P-PIDs) along with other protected health information is further de-identified using POSDA. Results: A sample of 250 PIDs pseudonymized by O-CAPP were selected and successfully validated. Of those, 125 PIDs that were pseudonymized by the nightly automated process were validated by multiple clinical trial investigators (CTIs). For the other 125, CTIs validated radiologic image pseudonymization by API request based on the provided PID and P-PID mappings. Conclusions: We developed a novel approach of an ondemand pseudonymization process that will aide researchers in obtaining a comprehensive and holistic view of study participant data without compromising patient privacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.