In this study, two types of ionic liquids (ILs) based on 1-butyl-3-methylimidazolium [Bmim] + and butyltrimethylammonium [Btma] + cations, paired to tetrafluoroborate [BF 4 ] − , hexafluorophosphate [PF 6 ] − , dicyanamide [DCA] − , and bis(trifluoromethylsilfonyl)imide [Tf 2 N] − anions, were chosen as adsorbates to investigate the influence of cation and anion type on the adsorption of ILs on the graphene surface. The adsorption process on the graphene surface (circumcoronene) was studied using M06-2X/cc-pVDZ level of theory. Empirical dispersion correction (D3) was also added to the M06-2X functional to investigate the effects of dispersion on the binding energy values. The graphene•••IL configurations, binding energies, and thermochemistry of IL adsorption on the graphene surface were investigated. Orbital energies, charge transfer behavior, the influence of adsorption on the hydrogen bond strength between cation and anion of ILs, and the significance of noncovalent interactions on the adsorption of ILs on the graphene surface were also considered. ChelpG analysis indicated that upon adsorption of ILs on the graphene surface the overall charge on the cation, anion, and graphene surface changes, enabled by the charge transfer that occurs between ILs and graphene surface. Orbital energy and density of states calculations also show that the HOMO−LUMO energy gap of ILs decreases upon adsorption on the graphene surface. Quantum theory of atoms in molecules analysis indicates that the hydrogen-bond strength between cation and anion in ILs decreases upon adsorption on the graphene surface. Plotting the noncovalent interactions between ILs and graphene surface shows the role and significance of cooperative π•••π, C−H•••π, and X•••π (X = N, O, F atoms from anions) interactions in the adsorption of ILs on the graphene surface. The thermochemical analysis also indicates that the free energy of adsorption (ΔG ads ) of ILs on the graphene surface is negative, and thus the adsorption occurs spontaneously.
Quantitative humoral profiling of recent samples from a human immunodeficiency virus (HIV)-infected adult who was cured following a delta32/delta32 CCR5 stem cell transplant in 2007 revealed no antibodies against p24, matrix, nucleocapsid, integrase, protease, and gp120, but low levels of antibodies against reverse transcriptase, tat, and gp41. Antibody levels to these HIV proteins persisted at high and stable levels in most noncontrollers, elite controllers, and antiretroviral-treated subjects, but a rare subset of controllers had low levels of antibodies against matrix, reverse transcriptase, integrase, and/or protease. Comprehensive HIV antibody profiles may prove useful for monitoring curative interventions.
Type I diabetes (T1D) is an autoimmune disease characterized by destruction of insulin-producing β-cells in the pancreas. Although several islet cell autoantigens are known, the breadth and spectrum of autoantibody targets has not been fully explored. Here the luciferase immunoprecipitation systems (LIPS) antibody profiling technology was used to study islet and other organ-specific autoantibody responses in parallel. Examination of an initial cohort of 93 controls and 50 T1D subjects revealed that 16% of the diabetic subjects showed anti-gastric ATPase autoantibodies which did not correlate with autoantibodies against GAD65, IA2, or IA2-β. A more detailed study of a second cohort with 18 potential autoantibody targets revealed marked heterogeneity in autoantibody responses against islet cell autoantigens including two polymorphic variants of ZnT8. A subset of T1D subjects exhibited autoantibodies against several organ-specific targets including gastric ATPase (11%), thyroid peroxidase (14%), and anti-IgA autoantibodies against tissue transglutaminase (12%). Although a few T1D subjects showed autoantibodies against a lung-associated protein KCNRG (6%) and S100-β (8%), no statistically significant autoantibodies were detected against several cytokines. Analysis of the overall autoantibody profiles using a heatmap revealed two major subgroups of approximately similar numbers, consisting of T1D subjects with and without organ-specific autoantibodies. Within the organ-specific subgroup, there was minimal overlap among anti-gastric ATPase, anti-thyroid peroxidase, and anti-transglutaminase seropositivity, and these autoantibodies did not correlate with islet cell autoantibodies. Examination of a third cohort, comprising prospectively collected longitudinal samples from high-risk individuals, revealed that anti-gastric ATPase autoantibodies were present in several individuals prior to detection of islet autoantibodies and before clinical onset of T1D. Taken together, these results suggest that autoantibody portraits derived from islet and organ-specific targets will likely be useful for enhancing the clinical management of T1D.
The oxidant-free dehydrogenation of alcohols to corresponding carbonyl compounds has been performed by using silver (0) nanoparticles supported on silica-coated ferrite as an efficient and recyclable heterogeneous catalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.