A technique for approximating a continuous function of n variables with a radial basis function (RBF) neural network is presented. The method uses an n-dimensional raised-cosine type of RBF that is smooth, yet has compact support. The RBF network coefficients are low-order polynomial functions of the input. A simple computational procedure is presented which significantly reduces the network training and evaluation time. Storage space is also reduced by allowing for a nonuniform grid of points about which the RBFs are centered. The network output is shown to be continuous and have a continuous first derivative. When the network is used to approximate a nonlinear dynamic system, the resulting system is bounded-input bounded-output stable. For the special case of a linear system, the RBF network representation is exact on the domain over which it is defined, and it is optimal in terms of the number of distinct storage parameters required. Several examples are presented which illustrate the effectiveness of this technique.
A quietstanding index is developed for tracking the postural sway of healthy and diabetic adults over a range of ages. Several postural sway features are combined into a single composite feature C that increases with age a. Sway features are ranked based on the r 2 -values of their linear regression models, and the composite feature is a weighted sum of selected sway features with optimal weighting coefficients determined using principal component analysis. A performance index based on both reliability and sensitivity is used to determine the optimal number of features. The features used to form C include power and distance metrics. The quiet standing index is a scalar that compares the composite feature C to a linear regression model f (a) using C′ (a) = C/f (a). For a motionless subject, C′ = 0, and when the composite feature exactly matches the healthy control (HC) model, C′ = 1. Values of C′ ≫ 1 represent excessive postural sway and may indicate impaired postural control.Diabetic neurologically intact subjects, nondiabetic peripheral neuropathy subjects (PN), and diabetic PN subjects (DPN) were evaluated. The quiet standing indexes of the PN and DPN groups showed statistically significant increases over the HC group. Changes in the quiet standing index over time may be useful in identifying people with impaired balance who may be at an increased risk of falling.
This paper proposes a new computerized educational approach to teach the power electronics laboratory. It describes PSpice implementation of the core power electronic circuits that depend on thyristor circuits to identify behaviors with load variations. It uses the developed simulation models to support and enhance power electronics education at the undergraduate level. These simulations successfully integrate the contents of the power electronic laboratory course. A study of the impact of these simulations on the results of the students showed that it helped them to master the course contents and to gain better grades. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.