Micromodel can provide valuable information to improve understanding of pore-scale transport phenomenon and can also be utilized to simulate the transport process at pore scale. This research aims to propose settlement option for quantification of suspended solids in micromodel. The micromodel is used to mimic the formation damage which occurs in reservoir formation that could simultaneously affect enhanced oil recovery. This is done by utilizing visual image interpretation through image analysis on micromodel chip. Following the quantification of suspended solids, the micromodel was injected with brine that eventually forms agglomeration. Images are taken from NIS-Element AR microscope automatically in RGB color profile and then made into grayscale and finally into binary modes. Since the micromodel is simulated in 2D form structure, the quantification method complemented with image analysis is focusing on the quantified area, µm2 region of interest categorized into 3 main groups of area B05, M45 and T50, respectively. This research will explore on segmentation and thresholding processes of the visual data acquired from micromodel experiment. An image-based computational algorithm is programmed in MATLAB Image Processing Toolbox and ImageJ; hence, suspended solids in porous media could be quantified from the visual image executed in micromodel.
In this experimental work, the adsorption of partially hydrophilic silica nanoparticles, SiO 2 has been investigated to determine the degree of silica nanoparticle aggregation in the porous media. An integrated quantitative and qualitative method was used by flowing silica nanoparticles into Buff Berea cores and glass micromodel. Water wet Buff Berea cores were flooded with 5 pore volumes of 0.05% silica nanoparticles solution followed by 10 pore volumes of brine post flush subjected to 30 and 60°C. The pressure drops increased rapidly at the initial stage of silica nanoparticles injection indicated the adsorption had taken place. Pressure drops reached the maximum value of ~3.1 psi and between 26.6-82.6 psi at 30 and 60°C respectively. Pressure drops gradually declined and stabilized in between ~0.4 and ~0.7 psi after couple of pore volumes of brine post flush, suggesting complete reversible and irreversible adsorption. Micromodel test provide qualitative information where the straining or log-jamming observed in the form of gelled-like suspension when silica nanoparticles in contact with brine. The adsorption is considered reversible when the suspension decreased after post flooded with brine. Silica nanoparticles used in this experimental work shows minimal aggregation that can be beneficial as improved oil recovery agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.