Penelitian ini bertujuan untuk: (1) menghasilkan aplikasi penilaian e-learning Sekolah Menengah Kejuruan (SMK) berbasis ISO 19796-1 yang dapat digunakan untuk mengevaluasi e-learning SMK di Yogyakarta menggunakan teknik Analitycal Hierarchy Process (AHP) dengan metode agregasi arithmetric mean dan geometric mean, (2) menguji kualitas aplikasi dengan menggunakan strandar ISO 9126. Penelitian ini merupakan penelitian Research and Development (R&D). Proses pengembangan aplikasi menggunakan metode Software Development Life Cycle (SDLC) dengan model Waterfall. Selanjutnya pada proses pengujian kualitas aplikasi menggunakan standar ISO 9126 yang terdiri atas aspek functionality, reliability, efficiency, maintainability, usability, dan portability. Hasil penelitian menunjukkan bahwa aplikasi penilaian e-learning SMK berdasarkan ISO 19796-1 telah berhasil dikembangkan menggunakan metode Software Development Life Cycle (SDLC) dengan model waterfall. Selanjutnya hasil dari analisis kualitas aplikasi menggunakan standar ISO 9126 menunjukkan bahwa aplikasi mempunyai hasil rata-rata sangat baik dan layak digunakan untuk penilaian kualitas e-learning SMK.
The methods for Software Effort Estimation are divided into two, these methods are grouped into Non Machine Learning (non-ML) and Machine Learning (ML) methods [1]. The k-NN method has the disadvantage of being unable to tolerate irrelevant features and greatly affect the accuracy of k-NN. The k-NN method is also difficult to deal with missing data problems and feature categorization problems such as features that are not relevant, weight features that are not optimal, and the same features [2]. Whereas the dataset of Software Effort Estimation still has some serious challenges such as the characteristics of the data set, which are irrelevant features and the level of influence of each feature in the estimated data of the software effort [3]. This study compared the k-NN individual method with the combination of feature selection method with k-NN to find out which method was the best. The results showed that the Forward Selection (FS) method and Median Weighted Information Gain with k-Nearest Neighbor can overcome the problem of irrelevant features so as to increase accuracy in the RMSE Software Effort Estimation dataset, which is smaller in the Albrecht dataset of 5,953 using the Median method-WIG k-NN, the Miyazaki dataset is 55,421 and Kemerer is 123,081 using the FS k-NN method. The combination of kNN with Feature Selection is proven to be able to improve the estimation results better than kNN individuals. With the FS k-NN method being the best by winning in 2 datasets Miyazaki and Kemerer.
Penelitian ini bertujuan untuk: (1) menghasilkan aplikasi Sistem Informasi Geografis Lembaga Pendidikan Formal di Kabupaten Jepara berbasis Website yang dapat digunakan untuk mengetahui informasi dan letak lembaga pendidikan di wilayah Jepara. Jenis Penelitian yang digunakan adalah Research and Development (R&D). Pengembangan aplikasi menggunakan metode Software Development Life Cycle (SDLC) dengan model Waterfall. Selanjutnya pada proses pengujian kualitas aplikasi menggunakan standar ISO 9126 yang terdiri dari aspek functionality, efficiency, usability, dan portability. Hasil penelitian menunjukkan bahwa aplikasi ini telah berhasil dikembangkan menggunakan metode Software Development Life Cycle (SDLC) dengan model waterfall. Selanjutnya hasil dari analisis kualitas aplikasi menggunakan standar ISO 9126 menunjukkan bahwa aplikasi mempunyai hasil rata-rata sangat baik dan layak digunakan untuk digunakan dan dimanfaatkan oleh pengguna.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.