The dynamics of land surface temperature (LST) in Afghanistan in the period 2000–2021 were investigated, and the impact of the factors such as soil moisture, precipitation, and vegetation coverage on LST was assessed. The remotely sensed soil moisture data from Land Data Assimilation System (FLDAS), precipitation data from Climate Hazards Group Infra-Red Precipitation with Station (CHIRPS), and NDVI and LST from Moderate-Resolution Imaging Spectroradiometer (MODIS) were used. The correlations between these data were analyzed using the regression method. The result shows that the LST in Afghanistan has a slightly decreasing but insignificant trend during the study period (R = 0.2, p-value = 0.25), while vegetation coverage, precipitation, and soil moisture had an increasing trend. It was revealed that soil moisture has the highest impact on LST (R = −0.71, p-value = 0.0007), and the soil moisture, precipitation, and vegetation coverage explain almost 80% of spring (R2 = 0.73) and summer (R2 = 0.76) LST variability in Afghanistan. The LST variability analysis performed separately for Afghanistan’s river subbasins shows that the LST of the Amu Darya subbasin had an upward trend in the study period, while for the Kabul subbasin, the trend was downward.
To investigate the dynamics of land surface temperature (LST) in Afghanistan in the period 2000-2021 and to assess the impact of such factors as soil moisture, precipitation, and vegetation coverage on it, remotely sensed soil moisture data from Land Data Assimilation System (FLDAS), precipitation data from Climate Hazards Group Infra-Red Precipitation with Station (CHIRPS), and NDVI and LST from Moderate Resolution Imaging Spectroradiometer (MODIS) were downloaded and correlations between them were analyzed using the regression method. The result shows that the LST in Afghanistan has a slightly decreasing, but insignificant trend during the study period (R=0.2, p-value=0.25), while vegetation coverage, precipitation, and soil moisture had an increasing trend. It was revealed that soil moisture has the highest impact on LST (R=0.7, p-value=0.0007), and the soil moisture, precipitation, and vegetation coverage explain almost 80% of spring (R2=0.73) and summer (R2=0.76) LST variability in Afghanistan. The LST variability analysis done separately for Afghanistan’s rivers subbasins shows that the LST of the Amu Darya subbasin had an upward trend in the study period, while for the Kabul subbasin the trend was downward.
Despite the importance of the Amu Darya and Kabul River Basins as a region in which more than 15 million people live, and its vulnerability to global warming, only several studies addressed the issue of the linkage of meteorological parameters on vegetation for the eastern basins of Afghanistan. In this study, data from the MODIS, Global Precipitation Measurement Mission (GPM), and Global Land Data Assimilation System (GLDAS) was used for the period from 2000 to 2021. The study utilized several indices, such as Precipitation Condition Index (PCI), Temperature Condition Index (TCI), Soil Moisture Condition Index (SMCI), and Microwave Integrated Drought Index (MIDI). The relationships between meteorological quantities, drought conditions, and vegetation variations were examined by analyzing the anomalies and using regression methods. The results showed that the years 2000, 2001, and 2008 had the lowest vegetation coverage (VC) (56, 56, and 55% of the study area, respectively). On the other hand, the years 2010, 2013, 2016, and 2020 had the highest VC (71, 71, 72, and 72% of the study area, respectively). The trend of the VC for the eastern basins of Afghanistan for the period from 2000 to 2021 was upward. High correlations between VC and soil moisture (R = 0.70, p = 0.0004), and precipitation (R = 0.5, p = 0.008) were found, whereas no signi cant correlation was found between VC and drought index MIDI. It was revealed that soil moisture, precipitation, land surface temperature, and area under meteorological drought conditions explained 45% of annual VC variability.
The vulnerability of vegetation in the Middle East to meteorological conditions and climate change, especially those leading to drought, is high. Despite the importance of the Amu Darya and Kabul River Basins (ADB and KRB) as a region in which more than 15 million people live, and its vulnerability to global warming, only several studies addressed the issue of the linkage of meteorological parameters on vegetation for the eastern basins of Afghanistan. In this study, data from the Moderate Resolution Imaging Spectroradiometer (MODIS), Global Precipitation Measurement Mission (GPM), and Land Data Assimilation System (GLDAS) to examine the impact of meteorological parameters on vegetation for the eastern basins of Afghanistan for the period from 2000 to 2021. The study utilized several indices, such as Precipitation Condition Index (PCI), Temperature Condition Index (TCI), Soil Moisture Condition Index (SMCI), and Microwave Integrated Drought Index (MIDI). The relationships between meteorological quantities, drought conditions, and vegetation variations were examined by analyzing the anomalies and using regression methods. The results showed that the years 2000, 2001, and 2008 had the lowest vegetation coverage (VC) (56, 56, and 55% of the study area, respectively). On the other hand, the years 2010, 2013, 2016, and 2020 had the highest VC (71, 71, 72, and 72% of the study area, respectively). The trend of the VC for the eastern basins of Afghanistan for the period from 2000 to 2021 was upward. High correlations between VC and soil moisture (R = 0.70, p = 0.0004), and precipitation (R = 0.5, p = 0.008) were found, whereas no significant correlation was found between VC and drought index MIDI. It was revealed that soil moisture, precipitation, land surface temperature, and area under meteorological drought conditions explained 45% of annual VC variability.
Despite the importance of the Amu Darya and Kabul River Basins as a region in which more than 15 million people live, and its vulnerability to global warming, only several studies addressed the issue of the linkage of meteorological parameters on vegetation for the eastern basins of Afghanistan. In this study, data from the MODIS, Global Precipitation Measurement Mission (GPM), and Global Land Data Assimilation System (GLDAS) was used for the period from 2000 to 2021. The study utilized several indices, such as Precipitation Condition Index (PCI), Temperature Condition Index (TCI), Soil Moisture Condition Index (SMCI), and Microwave Integrated Drought Index (MIDI). The relationships between meteorological quantities, drought conditions, and vegetation variations were examined by analyzing the anomalies and using regression methods. The results showed that the years 2000, 2001, and 2008 had the lowest vegetation coverage (VC) (56, 56, and 55% of the study area, respectively). On the other hand, the years 2010, 2013, 2016, and 2020 had the highest VC (71, 71, 72, and 72% of the study area, respectively). The trend of the VC for the eastern basins of Afghanistan for the period from 2000 to 2021 was upward. High correlations between VC and soil moisture (R = 0.70, p = 0.0004), and precipitation (R = 0.5, p = 0.008) were found, whereas no significant correlation was found between VC and drought index MIDI. It was revealed that soil moisture, precipitation, land surface temperature, and area under meteorological drought conditions explained 45% of annual VC variability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.