This paper reports on studies of multiple-injection strategies of gaseous fuel in a model combustion chamber and the role of jet-jet interactions on the mixing processes in the chamber using large-eddy simulation (LES). A highpressure non-reacting gas flow injected through a jet with a nozzle diameter of 1.35 mm into a quiescent inert air environment is considered. First, we validate the method and our computational setup by comparing the simulation results of a single injection case with available experimental data. It is shown that the transient ensemble-averaged LES results agree well with the experimental measurements. Second, we simulate and compare fourteen injection strategies in order to understand the effect of the main and the post-injections duration, the dwell time and the mass flow rate of post-injection on the mixing, jet penetration, and near-nozzle mixture. The contribution of each injection in the local mixture composition is quantified by solving transport equations for the mixture fraction of each injection.The results show that the turbulence generated in the main injection is enhanced when the post-injection flow into the main injection flow. The increase of the local turbulence intensity is in favor of increasing the scalar dissipation rate and enhancing the mixing rate. However, the penetration of the post-injection flow into the main injection flow and the level of the gas flow from the interaction of two injections depend on the dwell time and the momentum of the post-injection.The results also show that the post-injection modifies the near-nozzle mixture. The comparison of cases with different mass flow rates in the post-injection indicates that the momentum of the post-injection can be optimized either to push away the near-nozzle remaining gas from the main injection and reduce the near-nozzle residue by more than 25% or enrich this fuel-lean region and increase the near-nozzle gasses by more than 43%. These results are very interesting for optimization of the post-injection to reduce engine-out emissions. Highlights• A high-momentum short post-injection reduces the near-nozzle residue gases.• A low-momentum short post-injection enriches the near-nozzle over-lean mixture.• The longer the dwell time, the lower the peak mass of the fuel-rich mixture.• The cases with shorter dwell time and longer post-injection have more significant jet-jet interaction.
Link to publicationCitation for published version (APA): Hadadpour, A., Jangi, M., Pang, K. M., & Bai, X-S. (2019). The role of a split injection strategy in the mixture formation and combustion of diesel spray: A large-eddy simulation. AbstractThe role of a split injection in the mixture formation and combustion characteristics of a diesel spray in an enginelike condition is investigated. We use large-eddy simulations with finite rate chemistry in order to identify the main controlling mechanism that can potentially improve the mixture quality and reduces the combustion emissions. It is shown that the primary effect of the split injection is the reduction of the mass of the fuel-rich region where soot precursors can form.Furthermore, we investigate the interaction between different injections and explain the effects of the first injection on the mixing and combustion of the second injection. Results show that the penetration of the second injection is faster than that of the first injection. More importantly, it is shown that the ignition delay time of the second injection is much shorter than that of the first injection. This is due to the residual effects of the ignition of the first injection which increases the local temperature and maintains a certain level of combustion some intermediates or radical which in turn boosts the ignition of the second injection.
We present large-eddy simulation (LES) of a high-pressure gas jet that is injecting into a quiescent inert environment. The injection is through a nozzle with a diameter of 1.35 mm. Four injection strategies are considered in which the results of a single continuous injection case are compared with those of double injection cases with different injection splitting timing. In all double injection cases, the injection pulsing interval is kept the same, and the total injected mass is equal to that of the single injection case. On the other hand, the splitting timing is varied to investigate the effects of various injection splitting strategies on the mixture formation and the penetration length of the jet. Results show that the jet penetration length is not so sensitive to the splitting timing whereas the mixing quality can significantly change as a result of shifting the onset of injection splitting toward the end of injection. Especially, it is found that by adopting a post-injection strategy where a single injection splits into the main injection and late small injection near the end of injection period the mixing between the injected gas and ambient air is significantly improved. This trend is not as obvious when the injection splitting timing shifts toward the beginning or even in the middle of injection period. The increase of entrainment in the tail of each injection is one of the underlying physics in the mixing improvement in double injection cases. In addition to that, splitting a single injection into two smaller injections increases the surrounding area of the jet and also stretches it along the axial direction. It can potentially increase the mixing of injected gas with the ambient air.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.