BackgroundIschemia/reperfusion (I/R) is an important cause of acute renal failure and delayed graft function, and it may induce chronic renal damage by activating epithelial to mesenchymal transition (EMT) of renal tubular cells. Heparanase (HPSE), an endoglycosidase that regulates FGF-2 and TGFβ-induced EMT, may have an important role. Therefore, aim of this study was to evaluate its role in the I/R-induced renal pro-fibrotic machinery by employing in vitro and in vivo models.MethodsWild type (WT) and HPSE-silenced renal tubular cells were subjected to hypoxia and reoxygenation in the presence or absence of SST0001, an inhibitor of HPSE. In vivo, I/R injury was induced by bilateral clamping of renal arteries for 30 min in transgenic mice over-expressing HPSE (HPA-tg) and in their WT littermates. Mice were sacrificed 48 and 72 h after I/R. Gene and protein EMT markers (α-SMA, VIM and FN) were evaluated by bio-molecular and histological methodologies.ResultsIn vitro: hypoxia/reoxygenation (H/R) significantly increased the expression of EMT-markers in WT, but not in HPSE-silenced tubular cells. Notably, EMT was prevented in WT cells by SST0001 treatment. In vivo: I/R induced a remarkable up-regulation of EMT markers in HPA-tg mice after 48–72 h. Noteworthy, these effects were absent in WT animals.ConclusionsIn conclusion, our results add new insights towards understanding the renal biological mechanisms activated by I/R and they demonstrate, for the first time, that HPSE is a pivotal factor involved in the onset and development of I/R-induced EMT. It is plausible that in future the inhibition of this endoglycosidase may represent a new therapeutic approach to minimize/prevent fibrosis and slow down chronic renal disease progression in native and transplanted kidneys.
Despite the high prevalence of acute kidney injury (AKI) and its association with increased morbidity and mortality, therapeutic approaches for AKI are disappointing. This is largely attributed to poor understanding of the pathogenesis of AKI. Heparanase, an endoglycosidase that cleaves heparan sulfate, is involved in extracellular matrix turnover, inflammation, kidney dysfunction, diabetes, fibrosis, angiogenesis and cancer progression. The current study examined the involvement of heparanase in the pathogenesis of ischemic reperfusion (I/R) AKI in a mouse model and the protective effect of PG545, a potent heparanase inhibitor. I/R induced tubular damage and elevation in serum creatinine and blood urea nitrogen to a higher extent in heparanase over-expressing transgenic mice vs. wild type mice. Moreover, TGF-β, vimentin, fibronectin and α-smooth muscle actin, biomarkers of fibrosis, and TNFα, IL6 and endothelin-1, biomarkers of inflammation, were upregulated in I/R induced AKI, primarily in heparanase transgenic mice, suggesting an adverse role of heparanase in the pathogenesis of AKI. Remarkably, pretreatment of mice with PG545 abolished kidney dysfunction and the up-regulation of heparanase, pro-inflammatory (i.e., IL-6) and pro-fibrotic (i.e., TGF-β) genes induced by I/R. The present study provides new insights into the involvement of heparanase in the pathogenesis of ischemic AKI. Our results demonstrate that heparanase plays a deleterious role in the development of renal injury and kidney dysfunction, attesting heparanase inhibition as a promising therapeutic approach for AKI.
Background Atherosclerosis is a multifactorial process. Emerging evidence highlights a role of the enzyme heparanase in various disease states, including atherosclerosis formation and progression. Objective The aim of the study was to investigate the effect of heparanase inhibition on blood pressure, blood glucose levels, and oxidative stress in apoE−/− mice. Methods Male apoE−/− mice were divided into two groups: one treated by the heparanase inhibitor PG545, administered intraperitoneally weekly for seven weeks, and the other serving as control group (injected with saline). Blood pressure was measured a day before sacrificing the animals. Serum glucose levels and lipid profile were measured. Assessment of oxidative stress was performed as well. Results PG545 significantly lowered blood pressure and serum glucose levels in treated mice. It also caused significant reduction of the serum oxidative stress. For safety concerns, liver enzymes were assessed, and PG545 caused significant elevation only of alanine aminotransferase, but not of the other hepatic enzymes. Conclusion Heparanase inhibition by PG545 caused marked reduction of blood pressure, serum glucose levels, and oxidative stress in apolipoprotein E deficient mice, possibly via direct favorable metabolic and hemodynamic changes caused by the inhibitor. Possible hepatotoxic and weight wasting effects are subject for future investigation.
Background Red blood cell distribution width (RDW) is a routine hematologic parameter that is a predictor of cardiovascular disease (CVD) events and is independent of combined traditional risk factor scoring systems. The RDW has also been associated with rheumatic disease activity. Whether RDW is associated with traditional CVD risk factors or Atherosclerotic Cardiovascular Disease (ASCVD) 10-year CVD risk score in patients with seronegative spondyloarthritis with axial or peripheral disease has not been previously determined. Methods We performed a retrospective, chart review study evaluating the relationship between RDW, albumin, hemoglobin, C-reactive protein (CRP), absolute lymphocyte count (ALC), and ASCVD scoring parameters [age, hypertension status, diabetes mellitus (DM) status, lipid profile, and smoking status] in a cohort of spondyloarthritis patients, taking into consideration their HLA-B27 status, race, and treatment status. Results RDW was found to positively correlate with ASCVD 10-year score and age, and ASCVD score did not change over time after patients were treated for spondyloarthritis. Albumin was found to negatively correlate with ASCVD 10-year risk score. Both RDW and albumin correlated with CRP. ALC failed to correlate with ASCVD 10-year score but did show a tendency to be associated with CVD, CVD events, and cardiac conduction abnormalities. Conclusions These data indicate that further study is warranted to evaluate RDW, albumin level, and ALC as potential predictors of CVD in the spondyloarthritis patient population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.