Throughout history, cholera has posed a public health risk, impacting vulnerable populations living in areas with contaminated water and poor sanitation. Many studies have found a high correlation between the occurrence of cholera and environmental issues such as geographical location and climate change. Developing a cholera forecasting model might be possible if a relationship exists between the cholera epidemic and meteorological elements. Given the auto-regressive character of cholera as well as its seasonal patterns, a seasonal-auto-regressive-integrated-moving-average (SARIMA) model was utilized for time-series study from 2017 to 2022 cholera datasets obtained from the NCDC. Cholera incidence correlates positively to humidity, precipitation, minimum temperature, and maximum temperature with r = 0.1045, r = 0.0175, r = 0.0666, and r = 0.0182 respectively. Improving a SARIMA model, autoregressive integrated moving average (ARIMA), and Long short-term memory (LSTM) with the k-means clustering and discrete wavelet transform (DWT) for feature selection, the improved model is known as MODIFIED SARIMA outperforms both the LSTM, ARIMA, and SARIMA and also outperformed the improved LSTM and ARIMA with an RSS = 0.502 and an accuracy = 97% .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.