There is a growing interest in social robots to be considered in the therapy of children with autism due to their effectiveness in improving the outcomes. However, children on the spectrum exhibit challenging behaviors that need to be considered when designing robots for them. A child could involuntarily throw a small social robot during meltdown and that could hit another person's head and cause harm (e.g. concussion). In this paper, the application of soft materials is investigated for its potential in attenuating head's linear acceleration upon impact. The thickness and storage modulus of three different soft materials were considered as the control factors while the noise factor was the impact velocity. The design of experiments was based on Taguchi method. A total of 27 experiments were conducted on a developed dummy head setup that reports the linear acceleration of the head. ANOVA tests were performed to analyze the data. The findings showed that the control factors are not statistically significant in attenuating the response. The optimal values of the control factors were identified using the signal-to-noise (S/N) ratio optimization technique. Confirmation runs at the optimal parameters (i.e. thickness of 3 mm and 5 mm) showed a better response as compared to other conditions. Designers of social robots should consider the application of soft materials to their designs as it help in reducing the potential harm to the head.
Social robots have shown some efficacy in assisting children with autism and are now being considered as assistive tools for therapy. The physical proximity of a small companion social robot could become a source of harm to children with autism during aggressive physical interactions. A child exhibiting challenging behaviors could throw a small robot that could harm another child's head upon impact. In this paper, we investigate the effects of the mass and shape of objects thrown on impact at different velocities on the linear acceleration of a developed dummy head. This dummy head could be the head of another child or a caregiver in the room. A total of 27 main experiments were conducted based on Taguchi's orthogonal array design. The data were then analyzed using ANOVA and then optimized based on the signalto-noise ratio. Our results revealed that the two design factors considered (i.e. mass and shape) and the noise factor (i.e. impact velocities) affected the response. Finally, confirmation runs at the optimal identified shape and mass (i.e. mass of 0.3 kg and shape of either cube or wedge) showed an overall reduction in the resultant peak linear acceleration of the dummy head as compared to the other conditions. These results have implications on the design and manufacturing of small social robots whereby minimizing the mass of the robots can aid in mitigating the potential harm to the head due to impacts.
The purpose of this data is to investigate the effect of different thicknesses of different soft materials samples added to an object on the resultant head acceleration of a developed dummy head upon impact. The object was a cylinder (10 × 10 cm 2 , diameter and height) and weighs 0.4 kg. The investigated materials were Ecoflex, Dragon Skin, and Clay while the thickness were 1 mm, 2 mm, 3 mm, and 5 mm. The velocities of the impacts for the 108 experiments were between 1 m/s and 3 m/s. Three severity indices (i.e. peak head linear acceleration, 3 ms criterion and the Head Injury Criterion (HIC)) were calculated from the raw acceleration data. The impact velocities were tabulated from the video recordings. A summary of the processed data and the raw data are included in this dataset. Online repository contains the files: https://doi.org/10.7910/DVN/TXOPUH .
In this article, a data generated from impacts of objects with different shapes, masses, and impact velocities on a developed dummy head. The mass considered was in the range of 0.3–0.5 kg while the shapes considered were cube, wedge, and cylinder. The impact velocities levels were in the range of 1–3 m/s. A total of 144 experiments were conducted and the corresponding videos and raw data were analyzed for impact velocity, peak head linear acceleration, 3 ms criterion, and the Head Injury Criterion (HIC). This dataset includes the raw acceleration data and a summary of the overall processed data. The data is available on Harvard Dataverse: https://doi.org/10.7910/DVN/AVC8GG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.