In present work, a kind of spectral meshless radial point interpolation (SMRPI) technique is applied to the time fractional nonlinear Schrödinger equation in regular and irregular domains. The applied approach is based on erudite combination of meshless methods and spectral collocation techniques. The point interpolation method with the help of radial basis functions is used to construct shape functions which play as basis functions in the frame of SMRPI. It is proved the scheme is unconditionally stable with respect to the time variable in L 2 and also convergent by the order of convergence O(δt 2−α ), 0 < α < 1. In the current work, the thin plate spline are used as the basis functions and to eliminate the nonlinearity, a simple predictor-corrector (P-C) scheme is performed. It is shown that the SMRPI solution, as a complex function, is suitable one for the time fractional nonlinear Schrödinger equation. The results of numerical experiments are compared to analytical solutions to confirm the reliable treatment of these stable solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.