This study presents a generalised representation of voltage source converter (VSC) based high voltage direct current (HVDC) systems appropriate for power flow studies using the Newton-Raphson method. To reach this aim, the active loads and ideal synchronous machines are employed in order to incorporate both converter losses and power balance, respectively. Also, considering different aspects of computer implementation, the proposed solution method uses the conventional Newton-Raphson method. The proposed representation considers practical restrictions, switching and conduction losses of semiconductors, and different control strategies for VSC-HVDC stations. Moreover, the proposed generalised representation of VSC-HVDC systems can be easily extended to incorporate the multi-terminal VSC-HVDC grids in an efficient manner. To investigate the application of the proposed representation for VSC-HVDC systems and load flow solution, three test systems including the standard IEEE 30 bus and IEEE two area RTS-96 networks are used and discussion on results is provided. Results show that the proposed algorithm is able to solve AC-DC power flow problems very efficiently with considerably less time in comparison to other existing algorithms.
Here, using the probabilistic evaluation based on the Monte Carlo method, back-flashover rate and shielding failure flashover rate of 230 kV overhead transmission lines in the western regions of Iran are evaluated. To such an aim, first, the number of thunderstorm days per year is collected from the reported weather information in order to determine the ground flash density. Then, using MRU-200 equipment, the tower-footing resistance of several towers is measured. Matlab® software is used in order to produce lightning surges considering its probabilistic nature and randomly distribution on the ground to evaluate striking distance based on the geometric model. Then, calculated parameters are transferred to EMTP-RV software by establishing a link to perform the transient simulation and report the results for modelled 230 kV transmission line. Finally, considering IEEE-1243 standard, it is shown that due to high ground flash density, using 230 kV tower with one shield wire is not sufficient to protect the line against lightning phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.