The fundamental principles of the operation of a thin-disk laser are presented. We derived equations from a set of coupled rate equations that predict that the characteristics of a laser are affected by the Boltzmann occupation factors of the pump and the laser states simultaneously. The model is used to investigate the influence of the effective parameters on the operational efficiency of an end-pumped Yb:YAG disk laser. Based on our results, we examined laser output power as a function of output coupler reflectivity, crystal thickness or doping concentration, number of the pump beam passes, and temperature.
We employ a Monte Carlo ray-tracing code along with the ANSYS package to predict the optical and structural behavior in end-pumped CW Yb:YAG disk lasers. The presence of inhomogeneous temperature, stress, and strain distributions is responsible for many deleterious effects for laser action through disk fracture, strain-induced birefringence, and thermal lensing. The thermal lensing, in turn, results in the optical phase distortion in solid-state lasers. Furthermore, the dependence of optical phase distortion on variables such as the heat transfer coefficient, the cooling fluid temperature, and crystal thickness is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.