Non-contact optical methods such as digital holographic interferometry are highly suitable in measurements where the phenomena is fast, performed in transparent or semi-transparent environment and mustn’t be obstructed as when applying local contact techniques. Such specific application can be studying dynamic events during transonic and supersonic blade flutter. Fast, sensitive and rather easy access to the phase information make these techniques very attractive in the study of phase objects/phenomena. However, since light’s phase is bounded to a repetitive cycle of 2π radians, the range of measurement is limited to one cycle of the phase, limiting applications to small gradient phenomena. This paper presents a new interesting way of by-passing this limitation, while still keeping noise values low, by introducing a second laser with a close value wavelength, giving rise to a new interferometric pattern with an extended unambiguous range of measurement. Image acquisition is done simultaneously for both wavelengths and all reconstructions are digitally performed. The principle and preliminary results are included in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.