Despite its high accuracy to detect the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) approach possesses several limitations (e.g., the lengthy invasive procedure, the reagent availability, and the requirement of specialized laboratory, equipment, and trained staffs). We developed and employed a low-cost, noninvasive method to rapidly sniff out the coronavirus disease 2019 (COVID-19) based on a portable electronic nose (GeNose C19) integrating metal oxide semiconductor gas sensor array, optimized feature extraction, and machine learning models. This approach was evaluated in profiling tests involving a total number of 615 breath samples (i.e., 333 positive and 282 negative COVID-19 confirmed by RT-qPCR) obtained from 83 patients in two hospitals located in the Special Region of Yogyakarta, Indonesia. Four different machine learning algorithms (i.e., linear discriminant analysis (LDA), support vector machine (SVM), stacked multilayer perceptron (MLP), and deep neural network (DNN)) were utilized to identify the top-performing pattern recognition methods and to obtain high system detection accuracy (88–95%), sensitivity (86–94%), specificity (88–95%) levels from the testing datasets. Our results suggest that GeNose C19 can be considered a highly potential breathalyzer for fast COVID-19 screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.