We aim to investigate the effect of large-scale human movement restrictions during the COVID-19 lockdown on both the dengue transmission and vector occurrences. This study compared the weekly dengue incidences during the period of lockdown to the previous years (2015 to 2019) and a Seasonal Autoregressive Integrated Moving Average (SARIMA) model that expected no movement restrictions. We found that the trend of dengue incidence during the first two weeks (stage 1) of lockdown decreased significantly with the incidences lower than the lower confidence level (LCL) of SARIMA. By comparing the magnitude of the gradient of decrease, the trend is 319% steeper than the trend observed in previous years and 650% steeper than the simulated model, indicating that the control of population movement did reduce dengue transmission. However, starting from stage 2 of lockdown, the dengue incidences demonstrated an elevation and earlier rebound by four weeks and grew with an exponential pattern. We revealed that Aedes albopictus is the predominant species and demonstrated a strong correlation with the locally reported dengue incidences, and therefore we proposed the possible diffusive effect of the vector that led to a higher acceleration of incidence rate.
The impact of movement restrictions (MRs) during the COVID-19 lockdown on the existing endemic infectious disease dengue fever has generated considerable research interest. We compared the curve of weekly epidemiological records of dengue incidences during the period of lockdown to the trend of previous years (2015 to 2019) and a simulation at the corresponding period that expected no MRs and found that the dengue incidence declined significantly with a greater magnitude at phase 1 of lockdown, with a negative gradient of 3.2-fold steeper than the trend observed in previous years, indicating that the control of population movement did reduce dengue transmission. However, starting from phase 2 of lockdown, the dengue incidences demonstrated an elevation and earlier rebound by 4 weeks and grew with an exponential pattern. Together with our data on Aedes mosquitoes, we proposed a stronger diffusive effect of vector dispersal that led to a higher rate of transmission. From the result of the Aedes survey using human landing caught (HLC), we revealed that Aedes albopictus is the predominant species for both indoor and outdoor environments, with the abundance increasing steadily during the period of lockdown. We only recovered Aedes aegypti from the indoor environment, which is relatively fewer than Ae. albopictus, by contrasting their population growth, which suggested that Ae. albopictus invaded and colonized the habitat of Ae. aegypti during the period of lockdown. These findings would help authorities review the direction and efforts of the vector control strategy.Author summaryCOVID-19 pandemic is taking hold globally and dengue fever transmission is not on the top of the list of concerns. With a partial lockdown implemented by Malaysia on 18 March, we postulate the movement restrictions (MRs) of people in large-scale would hamper the regular dengue transmission and aim to reveal the impact of MRs on both dengue incidences and Aedes mosquitoes. We showed a significant decline of dengue incidences at the beginning of lockdown but later rebounded at an earlier time and higher rate compared to the corresponding period of previous years. Our result also reviews how adaptive the Ae. albopictus with the movement of the host, as the human contained in the house, the abundance of the mosquitoes increased significantly during the period of lockdown. We also suggest that Ae. albopictus could be the key substitution vector that contributes significantly to dengue virus circulation, and therefore, the vector control direction and strategies should be redesigned.
Pathogenic Leptospira is the causative agent of leptospirosis, an emerging zoonotic disease affecting animals and humans worldwide. The risk of host infection following interaction with environmental sources depends on the ability of Leptospira to persist, survive, and infect the new host to continue the transmission chain. Leptospira may coexist with other pathogens, thus providing a suitable condition for the development of other pathogens, resulting in multi-pathogen infection in humans. Therefore, it is important to better understand the dynamics of transmission by these pathogens. We conducted Boolean searches of several databases, including Google Scholar, PubMed, SciELO, and ScienceDirect, to identify relevant published data on Leptospira and coinfection with other pathogenic bacteria. We review the role of the host-microbiota in determining the synanthropic interaction of Leptospira sp. with other bacteria, thus creating a suitable condition for the leptospira to survive and persist successfully. We also discuss the biotic and abiotic factors that amplify the viability of Leptospira in the environment. The coinfection of leptospira with pathogenic bacteria has rarely been reported, potentially contributing to a lack of awareness. Therefore, the occurrence of leptospirosis coinfection may complicate diagnosis, long-lasting examination, and mistreatment that could lead to mortality. Identifying the presence of leptospirosis with other bacteria through metagenomic analysis could reveal possible coinfection. In conclusion, the occurrence of leptospirosis with other diseases should be of concern and may depend on the success of the transmission and severity of individual infections. Medical practitioners may misdiagnose the presence of multiple infections and should be made aware of and receive adequate training on appropriate treatment for leptospirosis patients. Physicians could undertake a more targeted approach for leptospirosis diagnosis by considering other symptoms caused by the coinfected bacteria; thus, more specific treatment could be given.
Aedes mosquitoes were found to lay their eggs in the cryptic breeding sites. Eliminating cryptic and open breeding sites is essential in reducing dengue virus transmission. However, it is often challenging for health officers to assess these breeding sites which are usually missed during larval surveillance. The autodissemination approach may produce a better outcome by manipulating female mosquitoes to disperse insecticide to other Aedes spp. mosquito habitats. Thus, the present study aims to evaluate the effectiveness of the pyriproxyfen autodissemination technique using Mosquito Home System against the population of mosquitoes. This study was conducted in Bandar Baru Bangi, Selangor, Malaysia. The Mosquito Home System was deployed to control Aedes spp. populations at treatment sites using before-after-control-impact (BACI) design. The presence of pyriproxyfen distribution was confirmed using the WHO larval bioassay which resulted in 10-35% larvae mortalities. Autodissemination of pyriproxyfen significantly reduced the population size of mosquito eggs (p<0.05), larvae (p<0.05), and ovitrap index (p<0.05) at the treatment areas compared to the control areas. Moreover, rainfall was correlated positively against ovitrap index (r = 0.247), larvae (r = 0.420), and eggs (r = 0.422). The study provides promising results for controlling Aedes spp. populations and also highlights the potentials of this technique as an alternative in vector control programmes. However, further studies on larger scale field trials are warranted.
The new emergence and re-emergence of arbovirus infections vectored by Aedes mosquitoes have been spread across Southeast Asia, Central Africa, United States, tropical Oceania and become a major of public health concerns. These arbovirus diseases found to have a similar vector, symptoms of the diseases and environments. The situation has become complicated without any specific vaccine or treatment for the diseases. As far as we concern, vector control is the best defense with many challenges, a scattered breeding site and biological behavioral sometimes, more difficult to control. Herein, we present a review of studies on current techniques proposed to combat arbovirus infections vectored by Aedes mosquitoes. A crucial gap in a vector control program is the inability to eliminate and destroy the cryptic breeding site by using conventional control methods. The idea and proper concept of using mosquitoes to bring insecticide to their oviposition site had been getting more interest in people to explore. Autodissemination is a self-delivery technique by manipulating the behavior of mosquitoes, carrying the insecticide and disseminate to cryptic breeding sites. This technique has shown a promising result in some countries and can be considered as additional tools in a vector control program
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.