Neutronic analysis on the Molten Salt Reactor FUJI-12 using the fissile material 235U in LiF-BeF2-UF4 has been carried out. The problem faced in the use of thorium-based fuel is that the amount of 233U is small and not available in nature. 233U was produced through the 232Th breeding at a cost of $46 million/kg. That is a very high price when compared to 235U enrichment, which is only $100/kg. The MSR FUJI-12 used in this study is a generation IV reactor with a mixture of liquid salt fuel LiF-BeF2-ThF4-UF4 and thorium-based fuel (232Th+233U). In this study, neutronic analysis was carried out by replacing thorium-based fuel with uranium-based fuel (235U+238U). Neutronic analysis was performed using the OpenMC 0.13.0 code, which is a Monte Carlo simulation-based neutron analysis code. The nuclear data library used for neutronic calculations is ENDF B-VII/1. The fuel is used in a LiF-BeF2-UF4 molten salt mixture with three eutectic compositions: fuel 1, fuel 2, and fuel 3. Each fuel composition is optimized by enriching 235U in UF4 by 3 % to 8 %. The optimization results show the stability of the reactor criticality value, which is the main parameter so that the reactor can operate for the specified time. The optimization results show that fuel 1 cannot reach its optimal state in each variation of 235U enrichment. Fuel 2 and fuel 3 can reach optimal conditions at a minimum enrichment of 8 % and 7 % 235U. The results of the analysis of the distribution of the neutron flux in the reactor core show the distribution of nuclear reactions that occur in the core. The distribution of flux values in fuel 1 shows that the fission chain reaction is not running perfectly. Fuel 2 and fuel 3 are more stable by maintaining maximum flux at the center of the reactor core.
This study focused on a conceptual core configuration of Gas Cooled Fast Reactor (GFR), as part of a generation IV reactor. Uranium-plutonium carbide (UC-PuC) was used as reactor fuel and a Monte Carlo simulation method using OpenMC has been carried out. This study aims to find the composition of uranium-plutonium carbide fuel to use inside a fuel pin, making up a hexagonal prism fuel assembly arranged to form an entire core. A homogeneous and heterogeneous core configuration was considered in this study, while the plutonium percentage varied from 8%- 15%. For the homogenous core configuration, 10% was found as the optimum plutonium fraction with the value of %∆k/k =1, which was then used as a reference to make up a heterogeneous core configuration. A heterogeneous core with 3 radial fuel regions of F1 using 9% Pu fraction, F2 10%, and F3 11% showed the most stable result for 5-year burn-up with a %∆k/k of 0.7. The %∆k/k value was decreased by 0.3 due to the fission reaction that occurred more evenly in all 3 fuel regions of heterogeneous configuration, reducing the core power peaking factor. Keywords: Core configuration, GFR, OpenMC, Reactivity, Fission reaction
Analysis of fuel volume fraction with uranium caride fuel in Gas Cooled Fast Reactor (GFR) with SRAC Code is has been done. The calculation used SRAC Code (Standard Reactor Analysis Code) which is developed by JAEA (Japan Atomic Energy Agency), and the data libraries nuclear used JENDL 4.0. There are two calculation has been used, fuel pin cell calculation (PIJ Calculation) and core calculation (CITATION Calculation). In core calculation, the leakage is calculated so the calculation more precise. The CITATION calculation use two type of core configuration, i.e. homogeneous core configuration and heterogeneous core configuration. The power density value of two type core configuration is quite difference. It is better use heterogeneous core configuration than homogeneous core configuration, because the power density of heterogeneous core configuration is flatter than the other. From the analysis of fuel volume fraction, when the volume fraction is increase, the k-eff value is increase. And the optimum design after has been analysis for fuel volume fraction, that is the fuel volume fraction is 49% with a heterogeneous core configuration of three types of fuel percentages, for Fuel1 9%, Fuel2 12% and Fuel3 15%. This reactor is cylindrical, has a core diameter of 240 cm and a core height of 100 cm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.