Solid oxide fuel cell (SOFC) system has been proposed to address the issue of waste gas emission due to gas flaring in oil and gas industry. System has unique advantage of consuming the waste gases and generating electricity as bye product. To analyze and quantify the proposed benefits, a robust cell performance model is highly desirable. A detailed understanding of SOFC component including electrode, electrolyte, interconnect, fuel processing and electrochemical reactions are first step in accurate determination of characteristic performance of the system. For this purpose, a review of modeling philosophies of SOFC system was undertaken in this study. Specifically, SOFC simulation and modeling using commercial software such as Aspen Plus, Aspen Hysys was focused in detail. SOFC models available in literature are either mathematical model or numerical models and ever evolving and improving. SOFC simulation rely on split approach due to absence of built-in module. Authors have developed an Aspen Hysys simulation model using split approach and discussed briefly here. Split approach approximates the SOFC phenomena, thereby inducing error. To overcome this deficiency, authors are developing a MATLAB based user model that can be integrated using ‘user unit operation’ available in Hysys. Details of the MATLAB program approach is included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.