This paper uses a two-layered soft voting-based ensemble model to predict the interfacial tension (IFT), as one of the transformer oil test parameters. The input feature vector is composed of acidity, water content, dissipation factor, color and breakdown voltage. To test the generalization of the model, the training data was obtained from one utility company and the testing data was obtained from another utility. The model results in an optimal accuracy of 0.87 and a F1-score of 0.89. Detailed studies were also carried out to find the conditions under which the model renders optimal results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.