Articles you may be interested inA fast and accurate model for forecasting wind speed and solar radiation time series based on extreme learning machines and principal components analysis J. Renewable Sustainable Energy 6, 013114 (2014); 10.1063/1.4862488How bootstrap can help in forecasting time series with more than one seasonal pattern AIP Conf.Abstract. The Employment Injury Scheme (EIS) provides protection to employees who are injured due to accidents whilst working, commuting from home to the work place or during employee takes a break during an authorized recess time or while travelling that is related with his work. The main purpose of this study is to forecast value on claims amount of EIS for the year 2011 until 2015 by using appropriate models. These models were tested on the actual EIS data from year 1972 until year 2010. Three different forecasting models are chosen for comparisons. These are the Naïve with Trend Model, Average Percent Change Model and Double Exponential Smoothing Model. The best model is selected based on the smallest value of error measures using the Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE). From the result, the best model that best fit the forecast for the EIS is the Average Percent Change Model. Furthermore, the result also shows the claims amount of EIS for the year 2011 to year 2015 continue to trend upwards from year 2010.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.