a b s t r a c tAnnually, 4.5 trillion cigarette butts (CBs) are flicked into our environment. Evidence exists that CB waste is deadly to aquatic life, but their lethality to the aquatic life of the main dengue vector is unknown. CBs are full of toxicants that occur naturally, during planting and manufacturing, which may act as larvicidal agents. We assessed Aedes aegypti vulnerability to Marlboro butts during its development. Overall, CBs showed insecticidal activities against larvae. At early phases of development, mortality rates were much higher in two CBs solution (2CBSol) and 3CBSol microcosms (MICRs). Larval survival gradually decreased with development in 1CBSol-MICRs. However, in great presence of CBs, mortality was high even for the late developmental stages. These results suggest that A. aegypti larvae are vulnerable to CB presence in their habitats, but this effect was seen most during the early developmental phases and in the presence of increased amounts of cigarette remnants. CB filters are being used as raw material in many sectors, i.e., brick, art, fashion, plastic industries, as a practical solution to the pollution problem, the observed butt waste toxicity to mosquito larvae open new avenues for the identification of novel insecticide products.
The objective of this study was to evaluate the potential of Aprostocetus hagenowii (Ratzeburg) (Hymenoptera: Eulophidae) to control American cockroaches, Periplaneta americana (L.) (Dictyoptera: Blattidae), in sewer manholes and in crevices around buildings. Parasitoids were released weekly for 12 wk from laboratory parasitized heat-killed oothecae, and parasitism monitored using sentinel oothecae of American cockroaches. In addition, preference of A. hagenowii for 1- to 4-wk-old oothecae was evaluated in the laboratory. A. hagenowii females showed no preference for any ootheca age. Twenty of the 30 tested females parasitized one ootheca, whereas the other 10 parasitized two oothecae. The total progeny (males, females, and total) that emerged from a single ootheca parasitized by a female was not significantly different to the total progeny that emerged from two oothecae parasitized by a female. The number of males, females, and total progeny that emerged from the second parasitized ootheca was significantly less than the number that emerged from the first parasitized ootheca. The weekly mean sentinel oothecal parasitism rate in wall crevices was 18.1 +/- 3.2% and in sewer manholes was 13.3 +/- 2.0%. The mean number of released A. hagenowii females per number of parasitized sentinel oothecae recorded in crevices was 189 +/- 18, whereas it was 428 +/- 50 in sewers. A. hagenowii females were more effective at parasitizing sentinel oothecae placed at high and middle levels in manholes than at a low level when releases were made at the midpoint of the manhole shaft.
BackgroundMating is a physiological process of crucial importance underlying the size and maintenance of mosquito populations. In sterile and incompatible insect technologies (SIT and IIT), mating is essential for mass production, persistence, and success of released individuals, and is a central parameter for judging the effectiveness of SIT/IIT programs. Some mosquitoes have an enormous reproductive potential for both themselves and pathogens and mating may contribute to persistence of infection in nature. As Aedes albopictus can transmit flaviviruses both sexually and horizontally, and as infected insects are usually derived from laboratory colonies, we investigated the implications of mating between a long-term laboratory colony of Ae. albopictus and wild populations.MethodsThrough a series of mating experiments, we examined the reproductive outcomes of sexual cross-affinity between laboratory-raised and wild adults of Ae. albopictus.ResultsThe results indicated appreciable mating compatibility between laboratory-reared and wild adults, and equivalent levels of egg production among reciprocal crosses. We also observed comparable larval eclosion in lab females mated with wild males, and increased adult longevity in female offspring from wild females|×|laboratory males crosses.ConclusionsTaken together, these data suggest that Ae. albopictus can preserve its reproductive fitness over a long period of time in the laboratory environment and has valuable attributes for SIT application. These observations together with the ability to successfully inseminate heterospecific females indicate the potential of Ae. albopictus to act as an ecological barrier if non-sterilized males are massively released in areas occupied by Aedes aegypti. The observed substantial reproductive fitness combined with the capability to reproduce both, itself and viruses illustrates the potential of Ae. albopictus to pose a serious threat if infected and released accidentally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.