Compatible solutes rescue plants in the hour of intense water deficit conditions. Glycinebetaine (GB) and potassium (K) are main solutes, playing role in improving plant water potential and ultimately the crop yield. However, only a few attempts have been made so far to study their optimum dozes and interactions to ameliorate the drought stress in wheat. To explore this, GB solutions of 0, 50,100 and 150 mM concentration and K solutions of 0, 0.5, 1.0, and 1.5% concentration were sprayed at milking stage of two wheat varieties under stress (Auqab-2000; drought sensitive and Lasani-2008; drought resistant). The stress was created by withholding water up till appearance of wilting symptoms and then the solutes (alone and/or in combination) were sprayed with carboxymethyl cellulose as a sticking agent, whereas Tween-20 was used as a surfactant for foliar spray. At maturity, ten random plants from field-experiments and three in case of pot experiment were selected to estimate plant height, spike length, number of spikelets spike -1 , number of grains spike -1 , and grain yields. Besides, water potential, osmotic potential and turgor potential of crop were also estimated.The results indicated that the drought stress adversely affected all the above parameters. The exogenous application of GB and K to wheat significantly improved spike length, number of grain per spike and grain yields. Moreover, a significant interaction between these solutes was observed since at a given level of GB all these yield parameters were increased (p < 0.05) with K concentration. The highest values were obtained when GB and K were applied in combination at 100 mM and 1.5%, respectively. The same treatment also improved the leaf water potential, osmotic potential and turgor potential to maintain plant water potential gradient under stress. These findings lead us to conclude that application of GB and K (100 mM and 1.5%, respectively) is the best strategy to ameliorate the drought impact on wheat at milking stage with improved production.
Poultry is an imperative domesticated livestock species that provides high quality protein and micronutrients as meat and eggs. In poultry production, feed is the single major input constituting 70–75% of total production cost. Feed mainly consists of cereal grains, those provide energy to the birds. However, these grains contain different levels of anti-nutritional factors such as non-starch polysaccharides (NSP). These NSP are indigestible by poultry birds due to the lack of vital endogenous enzymes (carbohydrases) thus increase intestinal viscosity which slower the migration and absorption of nutrients. Consequently, these NSP may also increase the chances for infection by inducing competition within gut microbiota for digestible nutrients. This affects bird's health and increases the production cost. Therefore, there is a need to find efficient and effective solutions for these problems. Carbohydrases supplementation have an important role in poultry diets with high NSP contents. Feed enzymes are being used from years to enhance growth performance and digestibility but have limited activity for selective ingredients. New generation carbohydrases with a board range of activity and stability help to degrade the complex substrates and improve growth performance of poultry. Present review summarizes the updated literature on the use of carbohydrases to improve bird's performance and intestinal health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.