We propose a bulk structured MXene,
T
i
3
A
l
C
2
deposited onto D-shaped fiber for soliton generation in an erbium-doped fiber laser (EDFL) cavity. Our saturable absorber (SA) device, based on MAX phase, was prepared by using stirring and ultrasonic vibration, which offer easier sample preparation compared with its 2D counterparts. By means of the polishing wheel technique, we fabricated a D-shaped fiber with a controlled polishing depth and incorporated the MAX phase
T
i
3
A
l
C
2
solution onto its polishing region. We obtained a mode-locked soliton pulse with the proposed MAX phase D-shaped (MAX-DS) SA in EDFL cavity. The pulse width, repetition rate, and central wavelength of the pulse train are 2.21 ps, 1.89 MHz, and 1557.63 nm, respectively. The polarization-insensitive EDFL cavity initiated a soliton operation with superior stability as the pump power tuned from 21 to 131 mW; further, the ML laser exhibits an average power of 15.3 mW, peak power of 3.8 kW, and pump efficiency of 12.5%. The MAX-DS SA incorporated inside the EDFL reveals efficient output performance, with a pulse energy of 8.14 nJ, the highest ever reported, to our best knowledge, among D-shaped fiber-based SA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.