The pharmacologic efficacy of the promising antitumor agent paclitaxel (Taxol) may be potentially enhanced through derivatization of the drug to a water-soluble tumor-recognizing conjugate. This work reports the design and synthesis of the first tumor-directed derivative of paclitaxel. A 7-amino acid synthetic peptide, BBN[7-13], which binds to the cell surface bombesin/gastrin-releasing peptide (BBN/GRP) receptor, was conjugated to the paclitaxel-2'-hydroxy function by a heterobifunctional poly(ethylene glycol) linker. The resulting conjugate, designated PTXPEGBBN[7-13], was soluble to the upper limit of tested concentrations (250 mg/mL). The conjugate completely retained the receptor binding properties of the attached peptide as compared with those of the unconjugated BBN[7-13]. In experiments with NCI-H1299 human nonsmall cell lung cancer cells, the cytotoxicity of the PTXPEGBBN[7-13] conjugate at a 15 nM dose was enhanced by a factor of 17.3 for 24 h and 10 for 96 h exposure times, relative to paclitaxel. The IC(50) of the conjugate, tested against the same cell line, was lower than the free drug by a factor of 2.5 for both 24 h and 96 h exposures. These results describe, for the first time, the design and synthesis of a soluble tumor-directed paclitaxel prodrug which may establish a new mode for the utilization of this drug in cancer therapy.
Conjugates of curcumin to two differently sized poly(ethylene glycol) molecules were synthesized in an attempt to overcome the low aqueous solubility of this natural product with cytotoxic activity against some human cancer cell lines. The soluble conjugates exhibited enhanced cytotoxicity as compared to that of the parent drug. Synthesis, analyses of the rate of drug release, and cytotoxicity studies are herein reported. The water-soluble conjugates may provide information useful for the development of injectable curcumin conjugates.
The goal of this study was to synthesize and evaluate a novel bombesin (BN) analogue containing a polyethylene glycol (PEG) linker that can be radiolabeled with 64Cu through the DOTA bifunctional chelate. It is hypothesized that PEG linkers would improve the pharmacokinetics of radiolabeled bombesin analogues to optimize their tumor-to-normal tissue ratios for radiotherapy applications. The formation of this conjugate (DOTA-PEG-BN(7-14)) was confirmed by MALDI-TOF mass spectrometry and was radiolabeled with 64Cu at a specific activity of 2.7 MBq/nmol. DOTA-PEG-BN(7-14) bound specifically to gastrin-releasing peptide receptor (GRPR)-positive PC-3 cells with an IC50 value of 3.9 microM for displacing 125I-Tyr4-BN. Internalization of 64Cu-DOTA-PEG-BN(7-14) into PC-3 cells showed that 5.7%, 13.4%, and 21.0% was internalized at 0.5, 2, and 4 hours, respectively. Biodistribution of 64Cu-DOTA-PEGBN(7-14) was evaluated in normal, athymic nude mice 2, 4, and 24 hours after i.v. injection. This showed that most of the tissues had a similar uptake and clearance of 64Cu-DOTA-PEG-BN(7-14) compared to a control peptide with an alkyl linker (DOTA-Aoc-BN(7-14)) at the given time points. There was uptake of 10.8% ID/g of 64Cu-DOTA-PEG-BN(7-14) 4 hours after i.v. injection in the GRPR-positive pancreas that was inhibited to 2.4% upon injection of an excess of Tyr4-BN. These studies demonstrate that BN analogues can be conjugated with PEG linkers, radiolabeled with 64Cu, and bind to GRPR. Future studies will attempt to increase the affinity of these analogues for GRPR and alter the pharmacokinetics of the 64Cu-labeled conjugates through the use of various sized PEG linkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.