Natural biopolymers have many attractive medical applications; however, complications due to fibrosis caused a reduction in diffusion and dispersal of nutrients and waste products. Consequently, severe immunocompatibility problems and poor mechanical and degradation properties in synthetic polymers ensue. Hence, the present study investigates a novel hydrogel material synthesized from caprolactone, ethylene glycol, ethylenediamine, polyethylene glycol, ammonium persulfate, and tetramethylethylenediamine via chemo-enzymatic route. Spectroscopic analyses indicated the formation of polyurea and polyhydroxyurethane as the primary building block of the hydrogel starting material. Biocompatibility studies showed positive observation in biosafety test using direct contact cytotoxicity assay in addition to active cellular growth on the hydrogel scaffold based on fluorescence observation. The synthesized hydrogel also exhibited (self) fluorescence properties under specific wavelength excitation. Hence, synthesized hydrogel could be a potential candidate for medical imaging as well as tissue engineering applications as a tissue expander, coating material, biosensor, and drug delivery system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.