LoRaWAN wireless communication channels are often impacted by noise and interference over long-range causing loss of a received signal. One of the main drawbacks of using existing propagation models is less accurate as these models in designing the communication link are tailored to simplify the estimation. In this paper, an artificial intelligent real time path loss model is proposed. It is capable of processing complex variables over a short period of time. Providing it with enough data, the model is able to learn channel behavior and predict the path loss accurately. Results of the model are benchmarked against classical statistical curve fitting models where RMSE values are also compared and indicating that the artificial intelligent model has better accurate prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.