Objective
Phosphate (P) and zinc (Zn) are essential plant nutrients required for nodulation, nitrogen-fixation, plant growth and yield. Mostly applied P and Zn nutrients in the soil are converted into unavailable form. A small number of soil microbes have the ability to transform unsolvable forms of P and Zn to an available form. P-Zn-solubilizing rhizobacteria are potential alternates for P and Zn supplement. In the present study, the effect of two P-Zn-solubilizing bacterial strains (
Bacillus
sp. strain AZ17 and
Pseudomonas
sp. strain AZ5) was evaluated on the growth of chickpea plant.
Methodology
Both strains were purified from the rhizospheric soil of chickpea plant grown-up in sandy soil and rain-fed area (Thal desert).
In vitro
, both strains solubilize P and Zn as well both strain produce IAA and organic acids. In the field experiments, conducted in the rain-fed area, the positive influence of inoculation with both bacterial isolates AZ5 and AZ17 on chickpea growth was observed.
Results
The application of inoculum (strains AZ5 and AZ17) resulted in up to 17.47% and 17.34% increase in grain yield of both types of chickpea grown in fertilized and non-fertilized soil, respectively over non-inoculated control. Strain AZ5 was the most effective inoculum, increasing up to 17.47%, 16.04%, 26.32%, 22.53%, 26.12% and 22.59% in grain yield, straw weight, nodules number, dry weight of nodules, Zn uptake and P uptake respectively, over control.
Conclusion
These results indicated that
Pseudomonas
sp. strain AZ5 and
Bacillus
sp. strain AZ17 can serve as effective microbial inocula for chickpea, particularly in the rain-fed area.
This study investigates the combined effect of locally adopted plant growth promoting rhizobacteria (PGPR), biochar, and synthetic fertilizer on the wheat crop for the production and economic returns. A total of 20 PGPR strains were isolated from three different ecological zones of Pakistan and were evaluated. Of them, three isolates were selected for further studies. The treatments included (i) control with a full dose of the recommended fertilizer, (ii) control with half a dose of the fertilizer, (iii) PGPR consortia with half a dose of the fertilizer, (iv) biochar with half a dose of the fertilizer, and (v) PGPR + biochar with half a dose of the fertilizer. The study was repeated at three different locations. The data collected for leaf area index (LAI), grain yield, biological yield, straw yield, and harvest index (HI) revealed significant differences (P ≤ 0.05) for the locations and treatments, but the interaction of location and treatments was not significant. Based on the productivity and economic returns, the treatment with PGPR + biochar with half a dose of the fertilizer proved to be the best. Thus, the use of the PGPR consortia and biochar can improve the yield and profit of wheat crop with reduced synthetic fertilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.