Background: Antibiotic resistance of bacteria is on the rise, thus the discovery of alternative therapeutic agents is urgently needed. Honey possesses therapeutic potential, including wound healing properties and antimicrobial activity. Although the antimicrobial activity of honey has been effectively established against an extensive spectrum of microorganisms, it differs depending on the type of honey. To date, no extensive studies of the antibacterial properties of tualang (Koompassia excelsa) honey on wound and enteric microorganisms have been conducted. The objectives of this study were to conduct such studies and to compare the antibacterial activity of tualang honey with that of manuka honey.
The current trend of burn wound care has shifted to more holistic approach of improvement in the long-term form and function of the healed burn wounds and quality of life. This has demanded the emergence of various skin substitutes in the management of acute burn injury as well as post burn reconstructions. Skin substitutes have important roles in the treatment of deep dermal and full thickness wounds of various aetiologies. At present, there is no ideal substitute in the market. Skin substitutes can be divided into two main classes, namely, biological and synthetic substitutes. The biological skin substitutes have a more intact extracellular matrix structure, while the synthetic skin substitutes can be synthesised on demand and can be modulated for specific purposes. Each class has its advantages and disadvantages. The biological skin substitutes may allow the construction of a more natural new dermis and allow excellent re-epithelialisation characteristics due to the presence of a basement membrane. Synthetic skin substitutes demonstrate the advantages of increase control over scaffold composition. The ultimate goal is to achieve an ideal skin substitute that provides an effective and scar-free wound healing.
Keloid disease is a fibroproliferative dermal tumor with an unknown etiology that occurs after a skin injury in genetically susceptible individuals. Increased familial aggregation, a higher prevalence in certain races, parallelism in identical twins, and alteration in gene expression all favor a remarkable genetic contribution to keloid pathology. It seems that the environment triggers the disease in genetically susceptible individuals. Several genes have been implicated in the etiology of keloid disease, but no single gene mutation has thus far been found to be responsible. Therefore, a combination of methods such as association, gene-gene interaction, epigenetics, linkage, gene expression, and protein analysis should be applied to determine keloid etiology.
Abstract:One of the ultimate goals of wound healing research is to find effective healing techniques that utilize the regeneration of similar tissues. This involves the modification of various wound dressing biomaterials for proper wound management. The biopolymer chitosan (-1,4-D-glucosamine) has natural biocompatibility and biodegradability that render it suitable for wound management. By definition, a biocompatible biomaterial does not have toxic or injurious effects on biological systems. Chemical and physical modifications of chitosan influence its biocompatibility and biodegradability to an uncertain degree. Hence, the modified biomedical-grade of chitosan derivatives should be pre-examined in vitro in order to produce high-quality, biocompatible dressings. In vitro toxicity examinations are more favorable than those performed in vivo, as the results are more reproducible and predictive. In this paper, basic in vitro tools were used to evaluate cellular and molecular responses with regard to the biocompatibility of biomedical-grade chitosan. Three paramount experimental parameters of biocompatibility in vitro namely cytocompatibility, genotoxicity and skin pro-inflammatory cytokine expression, were generally reviewed for biomedical-grade chitosan as wound dressing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.