The effects of fermented skim milk versus unfermented skim milk of camel on the levels of cholesterol in blood were investigated in rats. Levels of serum cholesterol and LDL-C/ HDL-C ratio were decreased significantly in Wistar rats that fed with a cholesterol-enriched diet and administered fermented skim camel milk compared with rats administered unfermented milk (P˂0.05). Furthermore, histopathological evaluation showed that liver tissue degeneration, apoptosis/necrosis, inflammation, and fatty changes (steatosis and fibrosis) decreased significantly at (P˂0.05) in the rats that fed with fermented skim camel milk compared to the rats which fed unfermented skim camel milk. Based on these results it can suggest that fermented skim camel milk might reduce the risk of hypercholesterolemia development in rats. The hypocholesterolemic and hepatoprotective effects of fermented skim camel milk were evident.
Autism spectrum disorders (ASDs) comprise a heterogeneous group of pathological conditions, mainly of genetic origin, characterized by stereotyped behavior, such as marked impairment in verbal and nonverbal communication, social skills, and cognition. Excitatory/inhibitory (E/I) imbalances have been recorded as an etiological mechanism of ASD. Furthermore, GABA, the main inhibitory neurotransmitter in adult life, is known to be much lower in both patients and rodent models of ASD. We propose correcting GABA signaling as a therapeutic strategy for ASD. In this study, 40 young male western Albino rats, 3–4 weeks in age, weighing about 60–70 g, were used. The animals were randomly assigned into six experimental groups, each including eight rats. Group I served as the control group and was orally administered phosphate-buffered saline. Groups II and III served as rodent models of ASD and were orally administered a neurotoxic dose of propionic acid (PPA). The rats in the three therapeutic groups (IV, V, and IV) received the same doses of PPA, followed by 0.2 g/kg body weight of pure Bifidobacterium infantis, a probiotic mixture of ProtexinR, and pure Lactobacillus bulgaricus, respectively, for 3 weeks. Selected variables related to oxidative stress, glutamate excitotoxicity, and gut bacteria were measured in the six groups. Both pure and mixed Lactobacillus and Bifidobacterium were effective in ameliorating glutamate excitotoxicity as an autistic feature developed in the PPA-induced rodent model. Their therapeutic effects mostly involved the correction of oxidative stress, restoration of depleted GABA, and up-regulation of GABA receptor gene expression. Pure Bifidobacterium was the most effective, followed by the mixture of probiotics and finally lactobacillus. In conclusion, Bifidobacteria and lactobacilli can be used independently or in combination as psychobiotics to ameliorate oxidative stress and glutamate excitotoxicity as two confirmed etiological mechanisms through the gut–brain axis.
This study investigated the hypolipidemic and antioxidant effects of the juice and water seed extracts of two pomegranate species from Saudi Arabia and Egypt, and compared them with each other as well as with ellagic acid (EA) in high-cholesterol diet (HCD) fed rats. Compared with the case in rats fed HCD alone, EA and juice or water seed extracts of both pomegranate types significantly reduced the levels of total cholesterol, triglycerides, LDL-c, and GSH, increased the level of HDL-c, increased the activity of SOD and CAT, and decreased the level of MDA in the serum of HCD-fed rats. There were more profound effects of the juice or water seed extract of both the Saudi and Egyptian pomegranates on serum HDL-c and GSH levels and the activities of SOD and CAT than those of EA. In conclusion, this study showed that water seed extracts or juice of both types of pomegranate ameliorated HCD-induced hyperlipidemia, lipid peroxidation, and changes of enzymatic and non-enzymatic antioxidants in the serum of HCD-fed rats.
A metabolic disease called hypercholesterolemia is connected to both oxidative damage and inflammation. The goal of the current investigation was to determine if olive oil and palm oil could prevent hypercholesterolemia-induced oxidative stress in the liver of rats fed a high-cholesterol diet (HCD). The experimental mice were given HCD for three months while also receiving 0.5 mL/kg of either palm or olive oil. Serum triglycerides, total cholesterol, LDL cholesterol, vLDL cholesterol, and the atherogenic index all significantly increased in HCD-fed rats, while HDL cholesterol significantly dropped. Additionally, HCD caused a notable rise in proinflammatory cytokines and serum transaminases in liver tissue. Additionally, HCD significantly increased the production of nitric oxide and lipid peroxidation in the liver while decreasing antioxidant enzymes. Treatment with palm and olive oils dramatically reduced the levels of pro-inflammatory cytokines and lipid peroxidation, improved antioxidant defenses, and considerably improved liver function indicators. Additionally, the examined oils dramatically decreased the expression of fatty acid synthase (FAS) in the liver of rats receiving HCD. In conclusion, HCD-fed rats exhibit significant antihyperlipidemic and cholesterol-lowering benefits from palm and olive oils. The improved antioxidant defenses, lower inflammation and lipid peroxidation, and altered hepatic FAS mRNA expression were the main mechanisms by which palm and olive oils produced their advantageous effects.
This study aimed to evaluate the protective and therapeutic potency of bee pollen and probiotic mixture on brain intoxication caused by propionic acid (PPA) in juvenile rats. Five groups of six animals each, were used: the control group only receiving phosphate-buffered saline; the bee pollen and probiotic-treated group receiving a combination of an equal quantity of bee pollen and probiotic (0.2 kg/kg body weight); the PPA group being treated for 3 days with an oral neurotoxic dose of PPA (0.25 kg/kg body weight); the protective and therapeutic groups receiving bee pollen and probiotic mixture treatment right before and after the neurotoxic dose of PPA, respectively. The levels of interleukin (IL)-1ß, IL-6, IL-8, IL-10, IL-12, tumor necrosis factor α, and interferon γ (IFN-γ) were investigated to evaluate the neuroinflammatory responses in brain tissues from different animal groups. The much higher IL-1β, IL-8, and IFN-γ, as pro-inflammatory cytokines (P < 0.001), together with much lower IL-10, as anti-inflammatory cytokine (P < 0.001) compared to controls clearly demonstrated the neurotoxic effects of PPA. Interestingly, the mixture of bee pollen and probiotics was effective in alleviating PPA neurotoxic effects in both therapeutic and protective groups demonstrating highly significant changes in IL-1β, IL-8, IL-10, and IFN-γ levels together with non-significant reduction in IL-6 levels compared to PPA-treated rats. Overall, our findings demonstrated a new approach to the beneficial use of psychobiotics presenting as bee pollen and probiotic combination in neuroinflammation through cytokine changes as a possible role of glial cells in gut–brain axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.