In this paper, the performances of adaptive noise cancelling system employing Least Mean Square (LMS) algorithm are studied considering both white Gaussian noise (Case 1) and colored noise (Case 2) situations. Performance is analysed with varying number of iterations, Signal to Noise Ratio (SNR) and tap size with considering Mean Square Error (MSE) as the performance measurement criteria. Results show that the noise reduction is better as well as convergence speed is faster for Case 2 as compared with Case 1. It is also observed that MSE decreases with increasing SNR with relatively faster decrease of MSE in Case 2 as compared with Case 1, and on average MSE increases linearly with increasing number of filter coefficients for both type of noise situations. All the experiments have been done using computer simulations implemented on MATLAB platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.