We extend the formalism of embedded spin networks and spin foams to include topological data that encode the underlying three-manifold or four-manifold as a branched cover. These data are expressed as monodromies, in a way similar to the encoding of the gravitational field via holonomies. We then describe convolution algebras of spin networks and spin foams, based on the different ways in which the same topology can be realized as a branched covering via covering moves, and on possible composition operations on spin foams. We illustrate the case of the groupoid algebra of the equivalence relation determined by covering moves and a 2-semigroupoid algebra arising from a 2-category of spin foams with composition operations corresponding to a fibered product of the branched coverings and the gluing of cobordisms. The spin foam amplitudes then give rise to dynamical flows on these algebras, and the existence of low temperature equilibrium states of Gibbs form is related to questions on the existence of topological invariants of embedded graphs and embedded two-complexes with given properties. We end by sketching a possible approach to combining the spin network and spin foam formalism with matter within the framework of spectral triples in noncommutative geometry.
Contents
Abstract. We construct an additive category where objects are embedded graphs in the 3-sphere and morphisms are geometric correspondences given by 3-manifolds realized in different ways as branched covers of the 3-sphere, up to branched cover cobordisms. We consider dynamical systems obtained from associated convolution algebras endowed with time evolutions defined in terms of the underlying geometries. We describe the relevance of our construction to the problem of spectral correspondences in noncommutative geometry.
We construct a cobordism group for embedded graphs in two different ways, first by using sequences of two basic operations, called "fusion" and "fission", which in terms of cobordisms correspond to the basic cobordisms obtained by attaching or removing a 1-handle, and the other one by using the concept of a 2-complex surface with boundary is the union of these knots. A discussion given to the question of extending Khovanov homology from links to embedded graphs, by using the Kauffman topological invariant of embedded graphs by associating family of links and knots to a such graph by using some local replacements at each vertex in the graph. This new concept of Khovanov homology of an embedded graph constructed to be the sum of the Khovanov homologies of all the links and knots.
A discussion given to the question of extending Khovanov homology from links to embedded graphs, by using the Kauffman topological invariant of embedded graphs by associating family of links and knots to a such graph by using some local replacements at each vertex in the graph. This new concept of Khovanov-Kauffman homology of an embedded graph constructed to be the sum of the Khovanov homologies of all the links and knots associated to this graph.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.