Water supplied to residential areas is prone to contaminants due to pipe residues and silt, and therefore resulted in cloudiness, unfavorable taste, and odor in water. Turbidity, a measure of water cloudiness, is one of the important factors for assessing water quality. This paper proposes a low-cost turbidity system based on a light detection unit to measure the cloudiness in water. The automated system uses Intel Galileo 2 as the microprocessor and a server for a web-based monitoring system. The turbidity detection unit consists of a Light Dependent Resistor (LDR) and a Light Emitting Diode (LED) inside a polyvinyl chloride (PVC) pipe. Turbidity readings were recorded for two different positionings; 90° and 180° between the detector (LDR) and the incident light (LED). Once the turbidity level reached a threshold level, the system will trigger the filtration process to clean the water. The voltage output captured from the designed system versus total suspended solid (TSS) in sample water is graphed and analyzed in two different conditions; in total darkness and in the present of ambient light. This paper also discusses and compares the results from the above-mentioned conditions when the system is submerged in still and flowing water. It was found that the trends of the plotted graph decline when the total suspended solid increased for both 90° and 180° detector turbidimeter in all conditions which imitate the trends of a commercial turbidimeter. By taking the consideration of the above findings, the design can be recommended for a low-cost real-time web-based monitoring system of the water quality in an IOT environment.
A communication method is proposed using Minimum Mean Square Error (MMSE) precoding and Successive Interference Cancellation (SIC) technique for millimetre-wave multiple-input multiple-output (mm-Wave MIMO) based wireless communication system. The mm-Wave MIMO technology for wireless communication system is the base potential technology for its high data transfer rate followed by data instruction and low power consumption compared to Long-Term Evolution (LTE). The mm-Wave system is already available in indoor hotspot and Wi-Fi backhaul for its high bandwidth availability and potential lead to rate of numerous Gbps/user. But, in mobile wireless communication system this technique is lagging because the channel faces relative orthogonal coordination and multiple node detection problems while rapid movement of nodes (transmitter and receiver) occur. To improve the conventional mm-wave MIMO nodal detection and coordination performance, the system processes data using symbolized error vector technique for linearization. Then the MMSE precoding detection technique improves the link strength by constantly fitting the channel coefficients based on number of independent service antennas (M), Signal to Noise Ratio (SNR), Channel Matrix (CM) and mean square errors (MSE). To maintain sequentially encoded user data connectivity and to overcome data loss, SIC method is used in combination with MMSE. MATLAB was used to validate the proposed system performance.
This paper presents a remote development of voice control and home security for smart home automation system using Arduino mega, GSM SIM900A, Bluetooth module, and HC-SR04 ultrasonic sensor. A microcontroller is programmed to control up to four home appliances via Bluetooth technology and transmit the received signal from sensor to user smartphone. Nowadays, there have been many commercials and research projects on smart homes but most of these products utilize remote control which have button on touch screen. In addition, there is also a need to give supporting system for people especially to the elderly, disabled, and increase their home security. Hence, we proposed a development of a wireless remote control for home gadgets which can be controlled with voice. This proposed system is expected to recognize human voice using voice reader android application to turn on and off home appliance. Another important feature developed in this project is on the detection of movement, using ultrasonic sensor, in which the signal is converted to message and forwarded to the mobile user via GSM module. The accuracy of the system is found to be above 95% and the electrical loads have been successfully controlled using voice command in controlling their home. In order for the system to work, it is necessary to power up Arduino Mega by 12V DC adaptor and connecting all AC power loads to the electricity. In this project, the proposed prototype of smart home automation system is implemented and tested on hardware so the user can control certain number of home appliances using voice.
Research on unmanned aerial vehicle (UAV) became popular because of remote flight access and cost-effective solution. 3-degree of freedom (3-DOF) unmanned helicopters is one of the popular research UAV, because of its high load carrying capacity with a smaller number of motor and requirement of forethought motor control dynamics. Various control algorithms are investigated and designed for the motion control of the 3DOF helicopter. Three-degree-of-freedom helicopter model configuration presents the same advantages of 3-DOF helicopters along with increased payload capacity, increase stability in hover, manoeuvrability and reduced mechanical complexity. Numerous research institutes have chosen the three-degree-of-freedom as an ideal platform to develop intelligent controllers. In this research paper, we discussed about a hybrid controller that combined with Adaptive and Quantitative Feedback theory (QFT) controller for the 3-DOF helicopter model. Though research on Adaptive and QFT controller are not a new subject, the first successful single Adaptive aircraft flight control systems have been designed for the U.S. Air Force in Wright Laboratories unmanned research vehicle, Lambda [1]. Previously researcher focused on structured uncertainties associated with controller for the flight conditions theoretically. The development of simulationbased design on flight control system response, opened a new dimension for researcher to design physical flight controller for plant parameter uncertainties. At the beginning, our research was to investigates the possibility of developing the QFT combined with Adaptive controller to control a single pitch angle that meets flying quality conditions of automatic flight control. Finally, we successfully designed the hybrid controller that is QFT based adaptive controller for all the three angles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.