The PM10 prediction has received considerable attention due to its harmful effects on human health. Machine learning approaches have the potential to predict and classify future PM10 concentrations accurately. Therefore, in this study, three machine learning algorithms—namely, decision tree (DT), boosted regression tree (BRT), and random forest (RF)—were applied for the prediction of PM10 in Kota Bharu, Kelantan. The results from these three methods were compared to find the best method to predict PM10 concentration for the next day by using the maximum daily data from January 2002 to December 2017. To this end, 80% of the data were used for training and 20% for validation of the models. The performance measure of the PM10 concentration was based on accuracy, sensitivity, specificity, and precision for RF, BRT, and DT, respectively, which indicates that these three models were developed effectively, and they are applicable in the prediction of other atmospheric environmental data. The best model to use in predicting the next day’s PM10 concentration classification was the random forest classifier, with an accuracy of 98.37, sensitivity of 97.19, specificity of 99.55, and precision of 99.54, but the result of the boosted regression tree was substantially different from the RF model, with an accuracy of 98.12, sensitivity of 97.51, specificity of 98.72, and precision of 98.71. The best model can assist local governments in providing early warnings to people who are at risk of acute and chronic health consequences from air pollution.
Air pollution is currently becoming a significant global environmental issue. The sources of air pollution in Malaysia are mobile or stationary. Motor vehicles are one of the mobile sources. Stationary sources originated from emissions caused by urban development, quarrying and power plants and petrochemical. The most noticeable contaminant in the Peninsular of Malaysia is the particulate matter (PM10), the highest contributor of Air Pollution Index (API) compared to other pollution parameters. The aim of this study is to determine the best loss function between quantile regression (QR) and ordinary least squares (OLS) using boosted regression tree (BRT) for the prediction of PM10 concentration in Alor Setar, Klang and Kota Bharu, Malaysia. Model comparison statistics using coefficient of determination (R2), prediction accuracy (PA), index of agreement (IA), normalized absolute error (NAE) and root mean square error (RMSE) show that QR is slightly better than OLS with the performance of R2 (0.60–0.73), PA (0.78–0.85), IA (0.86–0.92), NAE (0.15–0.17) and RMSE (9.52–22.15) for next-day predictions in BRT model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.