Nuclear magnetic resonance (NMR) spin relaxation is the most informative approach to experimentally probe the internal dynamics of proteins on the picosecond to nanosecond time scale. At the same time, molecular dynamics (MD) simulations of biological macromolecules are steadily improving through better physical models, enhanced sampling methods, and increased computational power, and they provide exquisite information about flexibility and its role in protein stability and molecular interactions. Many examples have shown that MD is now adept in probing protein backbone motion, but improvements are still required toward a quantitative description of the dynamics of side chains, for example, probed by the dynamics of methyl groups. Thus far, the comparison of computation with experiment for side chain dynamics has primarily focused on the relaxation of 13C and 2H nuclei induced by autocorrelated variation of spin interactions. However, the cross-correlation of 13C–1H dipolar interactions in methyl groups offers an attractive alternative. Here, we establish a computational framework to extract cross-correlation relaxation parameters of methyl groups in proteins from all-atom MD simulations. To demonstrate the utility of the approach, cross-correlation relaxation rates of ubiquitin are computed from MD simulations performed with the AMBER99SB*-ILDN and CHARMM36 force fields. Simulation results were found to agree well with those obtained by experiment. Moreover, the data obtained with the two force fields are highly consistent.
While allostery is of paramount importance for protein signaling and regulation, the underlying dynamical process of allosteric communication is not well understood. The PDZ3 domain represents a prime example of an allosteric single-domain protein, as it features a well-established long-range coupling between the C-terminal α3-helix and ligand binding. In an intriguing experiment, Hamm and co-workers employed photoswitching of the α3-helix to initiate a conformational change of PDZ3 that propagates from the C-terminus to the bound ligand within 200 ns. Performing extensive nonequilibrium molecular dynamics simulations, the modeling of the experiment reproduces the measured time scales and reveals a detailed picture of the allosteric communication in PDZ3. In particular, a correlation analysis identifies a network of contacts connecting the α3-helix and the core of the protein, which move in a concerted manner. Representing a one-step process and involving direct α3-ligand contacts, this cooperative transition is considered as the elementary step in the propagation of conformational change.
Nuclear magnetic resonance (NMR) spin relaxation is the most informative approach to experimentally probe the internal dynamics of proteins on the picosecond to nanosecond timescale. At the same time, molecular dynamics (MD) simulations of biological macromolecules are steadily improving through better physical models, enhanced sampling algorithms, and increasing computational power, and they provide exquisite information about flexibility and its role in protein stability and molecular interactions. Many examples have shown that MD is now adept in probing protein backbone motion, but improvements are still required towards a quantitative description of the dynamics of side chains, for example probed by the dynamics of methyl groups. Thus far, the comparison of computation with experiment for side chains has primarily focused on the relaxation of 13C and 2H nuclei induced by auto-correlated variation of spin interactions. However, the cross-correlation of 13C-1H dipolar interactions in methyl groups offers an attractive alternative. Here, we establish a methodological framework to extract cross-correlation relaxation parameters of methyl groups in proteins from all-atom MD simulations. To demonstrate the utility of the approach, cross-correlation relaxation rates of ubiquitin are computed from MD simulations performed with the AMBER99SB*-ILDN and CHARMM36 force fields. The simulation results were found to agree well with those obtained by experiment. Moreover, the data obtained with the two force fields are highly consistent.
While allostery is of paramount importance for protein signaling and regulation, the underlying dynamical process of allosteric communication is not well understood. PDZ3 domain represents a prime example of an allosteric single-domain protein, as it features a well-established long-range coupling between the C-terminal α 3 -helix and ligand binding. In an intriguing experiment, Hamm and coworkers employed photoswitching of the α 3 -helix to initiate a conformational change of PDZ3 that propagates from the C-terminus to the bound ligand within 200 ns. Performing extensive nonequilibrium molecular dynamics simulations, the modeling of the experiment reproduces the measured timescales and reveals a detailed picture of the allosteric communication in PDZ3. In particular, a correlation analysis identifies a network of contacts connecting the α 3 -helix and the core of the protein, which move in a concerted manner. Representing a one-step process and involving direct α 3 -ligand contacts, this cooperative transition is considered as elementary step in the propagation of conformational change.
Nuclear magnetic resonance (NMR) spin relaxation is the most informative approach to experimentally probe the internal dynamics of proteins on the picosecond to nanosecond timescale. At the same time, molecular dynamics (MD) simulations of biological macromolecules are steadily improving through better physical models, enhanced sampling algorithms, and increasing computational power, and they provide exquisite information about flexibility and its role in protein stability and molecular interactions. Many examples have shown that MD is now adept in probing protein backbone motion, but improvements are still required towards a quantitative description of the dynamics of side chains, for example probed by the dynamics of methyl groups. Thus far, the comparison of computation with experiment for side chains has primarily focused on the relaxation of 13C and 2H nuclei induced by auto-correlated variation of spin interactions. However, the cross-correlation of 13C-1H dipolar interactions in methyl groups offers an attractive alternative. Here, we establish a methodological framework to extract cross-correlation relaxation parameters of methyl groups in proteins from all-atom MD simulations. To demonstrate the utility of the approach, cross-correlation relaxation rates of ubiquitin are computed from MD simulations performed with the AMBER99SB*-ILDN and CHARMM36 force fields. The simulation results were found to agree well with those obtained by experiment. Moreover, the data obtained with the two force fields are highly consistent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.