In this paper, a modied Adomian decomposition method has been applied to approximate the solution of the fuzzy Volterra-Fredholm integral equations of the first and second Kind. That, a fuzzy Volterra-Fredholm integral equation has been converted to a system of Volterra-Fredholm integral equations in crisp case. We use MADM to find the approximate solution of this system and hence obtain an approximation for the fuzzy solution of the Fuzzy Volterra-Fredholm integral equation. A nonlinear evolution model is investigated. Moreover, we will prove the existence, uniqueness of the solution and convergence of the proposed method. Also, some numerical examples are included to demonstrate the validity and applicability of the proposed technique.
This paper demonstrates a study on some significant latest innovations in the approximation techniques to find the approximate solutions of Caputo fractional Volterra-Fredholm integro-differential equations. To apply this, the study uses Adomian decomposition method and modified Laplace Adomian decomposition method. A wider applicability of these techniques is based on their reliability and reduction in the size of the computational work. This study provides analytical approximate to determine the behavior of the solution. It proves the existence and uniqueness results and convergence of the solution. In addition, it brings an example to examine the validity and applicability of the proposed techniques.
In this article, the homotopy perturbation method has been successfully applied to find the approximate solution of a Caputo fractional Volterra-Fredholm integro-differential equation. The reliability of the method and reduction in the size of the computational work give this method a wider applicability. Also, the behavior of the solution can be formally determined by the analytical approximate. Moreover, we proved the existence and uniqueness results of the solution. Finally, an example is included to demonstrate the validity and applicability of the proposed technique.
<div>This paper mainly focuses on the recent advances in the some approximated methods for solving fuzzy Volterra-Fredholm integral equations, namely, Adomian decomposition method, variational iteration method and homotopy analysis method. We converted fuzzy Volterra-Fredholm integral equation to a system of Volterra-Fredholm integral equation in crisp case. The approximated methods using to find the approximate solutions of this system and hence obtain an approximation for the fuzzy solution of the fuzzy Volterra-Fredholm integral equation. To assess the accuracy of each method, algorithms with Mathematica 6 according is used. Also, some numerical examples are included to demonstrate the validity and applicability</div><div>of the proposed techniques.</div>This paper mainly focuses on the recent advances in the some approximated methods for solvingfuzzy Volterra-Fredholm integral equations, namely, Adomian decomposition method, variational iterationmethod and homotopy analysis method. We converted fuzzy Volterra-Fredholm integral equation to asystem of Volterra-Fredholm integral equation in crisp case. The approximated methods using to find theapproximate solutions of this system and hence obtain an approximation for the fuzzy solution of the fuzzyVolterra-Fredholm integral equation. To assess the accuracy of each method, algorithms with Mathematica 6according is used. Also, some numerical examples are included to demonstrate the validity and applicabilityof the proposed techniques.
The reliability of the homotopy analysis method (HAM) and reduction in the size of the computational work give this method a wider applicability. In this paper, HAM has been successfully applied to find the approximate solutions of Caputo fractional Volterra-Fredholm integro-differential equations. Also, the behavior of the solution can be formally determined by analytical approximation. Moreover, the study proves the existence and uniqueness results and the convergence of the solution. This paper concludes with an example to demonstrate the validity and applicability of the proposed technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.