The mono and dialkylation of pyridazino[4,5-b]indole with a set of alkylating agents were achieved. The synthesized pyridazino[4,5-b]indole hits have been evaluated and discovered as a new phosphoinositide 3-kinase (PI3K) inhibitor for breast cancer therapy.
Intra and intermolecular interactions found in the developed crystals of the synthesized py-ron-2,4-dione derivatives play crucial rules in the molecular conformations and crystal stabili-ties, respectively. In this regard, Hirshfeld calculations were used to quantitatively analyze the different intermolecular interactions in the crystal structures of some functionalized py-ran-2,4-dione derivatives. The X-ray structure of pyran-2,4-dione derivative namely (3E,3'E)-3,3'-((ethane-1,2-diylbis(azanediyl))bis(phenylmethanylylidene))bis(6-phenyl-2H-pyran-2,4(3H)-dione) was determined. It crystallized in the monoclinic crystal system and C2/c space group with unit cell parameters: a = 14.0869(4) Å, b = 20.9041(5) Å, c = 10.1444(2) Å and β = 99.687(2)°. Generally, the H…H, H…C, O…H and C…C contacts are the most important interactions in the molecular packing of the studied pyran-2,4-diones. The molecular structure of these compounds is stabilized by intramolecular O…H hydrogen bond. The nature and strength of the O…H hy-drogen bonds were analyzed using atoms in molecules calculations. In all compounds, the O…H hydrogen bond belongs to closed-shell interactions where the interaction energies are higher at the optimized geometry than the X-ray one due to the shortening in the A…H distance as a con-sequence of the geometry optimization. These compounds have polar characters with different charged regions which explored using molecular electrostatic potential map. Their natural charges, reactivity descriptors and NMR chemical shifts were computed, discussed and com-pared.
A new series of nitrogen and sulfur heterocyclic systems were efficiently synthesized by linking the following four rings: indole; 1,2,4-triazole; pyridazine; and quinoxaline hybrids. The strength of the acid that catalyzes the condensation of 4-amino-5-(1H-indol-2-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione 1 with aromatic aldehydes controlled the final product. Reflux in glacial acetic acid yielded Schiff bases 2–6, whereas concentrated HCl in ethanol resulted in a cyclization product at C-3 of the indole ring to create indolo-triazolo-pyridazinethiones 7–16. This fascinating cyclization approach was applicable with a wide range of aromatic aldehydes to create the target cyclized compounds in excellent yield. Additionally, the coupling of the new indolo-triazolo-pyridazinethiones 7–13 with 2,3-bis(bromomethyl)quinoxaline, as a linker in acetone and K2CO3, yielded 2,3-bis((5,6-dihydro-14H-indolo[2,3-d]-6-aryl-[1,2,4-triazolo][4,3-b]pyridazin-3 ylsulfanyl)methyl)quinoxalines 19–25 in a high yield. The formation of this new class of heterocyclic compounds in high yields warrants their use for further research. The new compounds were characterized using nuclear magnetic resonance (NMR) and mass spectral analysis. Compound 6 was further confirmed by the single crystal X-ray diffraction technique.
A straightforward green synthesis of 4-methyl-1,2,5,6-tetraazafluoranthen-3(2H)-one 6 is reported from ninhydrin 1 via condensation with ethyl acetoacetate, followed by cyclization with hydrazine hydrate in water as a benign solvent. Tetraazafluoranthen-3-thione 7 was obtained using Lawesson's reagent. N-alkylated tetraazafluoranthen-3-one 8−12 and Salkylated analogues 13−15 were synthesized via alkylation. The investigation of the unique reactivity of 4-methyl-1,2,5,6-tetraazafluoranthen-3(2H)-one/ thione toward the alkylation and aza-Michael additions was explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.