This paper presents a compact 5G multiple-input multiple-output (MIMO) microstrip antenna with isolation enhancement based on a slotted complementary split-ring resonator (SCSRR) and the theory of characteristic modes (TCMs). The metamaterial unit consists of three CSRR connected by extra slots. These added slots improve significantly the rejection response in terms of bandwidth and suppression. The dispersion diagram analysis is introduced to show the filtering characteristics of the band-gap structure before and after adding these additional slots. The TCM is employed to investigate the behavior of this 5G MIMO antenna before and after adding the slotted CSRR. The TCM is also applied to the MIMO antenna system to build up a precise methodology that can foresee whether the isolation can be upgraded further or not. The slotted CSRR is inserted meticulously in specific locations to block the coupling modes and almost does not affect the results of the noncoupling modes to improve the isolation remarkably. With this slotted CSRR, a 27-dB reduction in the mutual coupling between the two patch antennas is achieved. The whole design has been simulated utilizing the Microwave Studio CST ver. 18 simulator. The antenna being proposed is highly efficient and suitable for 5G wireless communication.
Metamaterials (MTMs) have received considerable attention due to their novel electromagnetic properties. Their applications include enhancing gain and bandwidth in microstrip antennas. In this article, a dual band microstrip antenna design based on characteristic mode analysis (CMA) using MTM superstrate is proposed for 5G wireless communication. The CMA is used for the modelling, analysis and optimization of the proposed antenna to examine the underlying modal behaviour of the MTM unit cell and to guide mode excitation. The antenna structure consists of a microstrip feed line connected to a rectangular patch. Then triangular split ring resonator unit cell is inserted on the ground of a traditional patch antenna that resonates at 15 GHz to produce additional resonance at 10 GHz. A planar array of 2 × 3 triangle MTM unit cells is used as superstrate to improve the gain and bandwidth at both resonances simultaneously. The optimal distance between MTM superstrate and the antenna patch is determined using the Fabry-Perot cavity theory to maximize power directivity and efficiency of the proposed antenna. The CST microwave studio software is used to model and optimize the proposed antenna. A prototype of the designed antenna that was fabricated showed good agreement between measurement and simulation results.
In this paper, a Tri-band microstrip-line-fed low profile microstrip patch antenna is proposed for future multi-band 5 G wireless communication applications. The proposed antenna is printed on a compact Rogers RT5880 substrate of dimensions 20×16.5×0.508 mm3 with relative permittivity, εr of 2.2 and loss tangent, tan δ of 0.0009. To improve return loss and bandwidth of the proposed antenna, a partial ground plane technique is employed. The proposed antenna operates at 10, 28, and 38 GHz, three of the selected frequencies which are allocated by the International Telecommunication Union (ITU) for 5 G mobile communications. To reduce interference between the 5 G system and other systems in the band, a pair of T-shaped slots is etched in the radiating patch to reject unwanted frequency bands. The proposed design provides a gain of 5.67 dB at 10 GHz, 9.33 dB at 28 GHz and 9.57 dB at 38 GHz; the radiation pattern is mostly directional. The proposed antenna is designed and optimized using two commercial 3D full-wave software, viz. CST microwave studio and Ansoft HFSS. A prototype of the designed antenna that was fabricated and showed good agreement between the actual measurements of S11 & VSWR and the simulation results using both software.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.