Several studies have evaluated the efficacy of using human oncolytic adenovirus (OAdv)-loaded mesenchymal stem cells (MSC) for cancer treatment. For example, we have described the antitumor efficacy of CELYVIR, autologous bone marrow-mesenchymal stem cells infected with the OAdv ICOVIR-5, for treatment of patients with neuroblastoma. Results from this clinical trial point out the role of the immune system in the clinical outcome. In this context, a better understanding of the immunophenotypic changes of human MSCs upon adenoviral infection and how these changes affect human autologous or allogeneic peripheral blood mononuclear cells (PBMC) could guide strategies to improve the antitumor efficacy of infected MSCs. In this work, we show how infection by an OAdv induces toll-like receptor 9 overexpression and activation of the NFB pathway in menstrual blood-derived MSCs, leading to a specific cytokine secretion profile. Moreover, a proinflammatory environment, mainly mediated by monocyte activation that leads to the activation of both T cells and natural killer cells (NK cell), is generated when OAdv-loaded MSCs are cocultured with allogeneic PBMCs. This combination of allogeneic PBMCs and OAdv-loaded MSCs enhances antitumor efficacy both in vitro and in vivo, an effect partially mediated by monocytes and NK cells. Altogether our results demonstrate not only the importance of the immune system for the OAdv-loaded MSCs antitumor efficacy, but in particular the benefits of using allogeneic MSCs for this therapy.
To enhance adenovirus-mediated oncolysis, different approaches that tackle the selectivity, tumor penetration, and spreading potential of oncolytic adenoviruses have been reported. We have previously demonstrated that insertion of the internalizing Arginine-Glycine-Aspartic (iRGD) tumor-penetrating peptide at the C terminus of the fiber or transgenic expression of a secreted hyaluronidase can improve virus tumor targeting and spreading. Here we report a new oncolytic adenovirus ICOVIR17K-iRGD in which both modifications have been incorporated. In xenografted A549 tumors in nude mice, ICOVIR17K-iRGD shows higher efficacy than the non-iRGD counterpart. To gain insights into the role of the immune system in oncolysis, we have studied ICOVIR17K-iRGD in the tumor isograft mouse model CMT64.6, partially permissive to human adenovirus 5 replication, in immunodeficient or immunocompetent mice. Whereas no efficacy was observed in the immunodeficient setting due to insufficient viral replication, partial efficacy and a polymorphonuclear and CD8+ T cell infiltrate were observed in the immunocompetent mice. The results indicate that the elicitation of a virus-induced anti-tumoral immune response is responsible for the observed partial anti-tumoral effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.