Excessive recruitment of monocytes and progression of fibrosis are hallmarks of chronic kidney disease (CKD). Recently we reported that the expression of connexin 43 (Cx43) was upregulated in the kidney during experimental nephropathy. To investigate the role of Cx43 in the progression of CKD, we interbred RenTg mice, a genetic model of hypertension-induced CKD, with Cx43+/- mice. The renal cortex of 5-month-old RenTgCx43+/- mice showed a marked decrease of cell adhesion markers leading to reduced monocyte infiltration and interstitial renal fibrosis compared with their littermates. In addition, functional and histological parameters such as albuminuria and glomerulosclerosis were ameliorated in RenTgCx43+/- mice. Interestingly, treatment with Cx43 antisense produced remarkable improvement of renal function and structure in 1-year-old RenTg mice. Similar results were found in Cx43+/- or wild-type mice treated with Cx43 antisense after obstructive nephropathy. Furthermore, in these mice, Cx43 antisense attenuated E-cadherin downregulation and phosphorylation of the transcription factor Sp1 by the ERK pathway resulting in decreased transcription of type I collagen gene. Interestingly, Cx43-specific blocking peptide inhibited monocyte adhesion in activated endothelium and profibrotic pathways in tubular cells. Cx43 was highly increased in biopsies of patients with CKD. Thus, Cx43 may represent a new therapeutic target against the progression of CKD.
Increased renal expression of periostin, a protein normally involved in embryonic and dental development, correlates with the decline of renal function in experimental models and patient biopsies. Because periostin has been reported to induce cell differentiation, we investigated whether it is also involved in the development of renal disease and whether blocking its abnormal expression improves renal function and/ or structure. After unilateral ureteral obstruction in wild-type mice, we observed a progressive increase in the expression and synthesis of periostin in the obstructed kidney that associated with the progression of renal lesions. In contrast, mice lacking the periostin gene showed less injury-induced interstitial fibrosis and inflammation and were protected against structural alterations. This protection was associated with a preservation of the renal epithelial phenotype. In vitro, administration of TGF-b to renal epithelial cells increased the expression of periostin several-fold, leading to subsequent loss of the epithelial phenotype. Furthermore, treatment of these cells with periostin increased the expression of collagen I and stimulated the phosphorylation of FAK, p38, and ERK 42/44. In vivo delivery of antisense oligonucleotides to inhibit periostin expression protected animals from L-NAME-induced renal injury. These data strongly suggest that periostin mediates renal disease in response to TGF-b and that blocking periostin may be a promising therapeutic strategy against the development of CKD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.