Machine learning (ML) was used to develop classification models to predict individual tumor patients’ outcomes. Binary classification defined whether the tumor was malignant or benign. This paper presents a comparative analysis of machine learning algorithms used for breast cancer prediction. This study used a dataset obtained from the National Cancer Institute (NIH), USA, which contains 1.7 million data records. Classical and deep learning methods were included in the accuracy assessment. Classical decision tree (DT), linear discriminant (LD), logistic regression (LR), support vector machine (SVM), and ensemble techniques (ET) algorithms were used. Probabilistic neural network (PNN), deep neural network (DNN), and recurrent neural network (RNN) methods were used for comparison. Feature selection and its effect on accuracy were also investigated. The results showed that decision trees and ensemble techniques outperformed the other techniques, as they both achieved a 98.7% accuracy.
With the increasing use of machine learning across various fields to address several aims and goals, the complexity of the ML and Deep Learning (DL) approaches used to provide solutions has also increased. In the last few years, Explainable AI (XAI) methods to further justify and interpret deep learning models have been introduced across several domains and fields. While most papers have applied XAI to English and other Latin-based languages, this paper aims to explain attention-based long short-term memory (LSTM) results across Arabic Sentiment Analysis (ASA), which is considered an uncharted area in previous research. With the use of Local Interpretable Model-agnostic Explanation (LIME), we intend to further justify and demonstrate how the LSTM leads to the prediction of sentiment polarity within ASA in domain-specific Arabic texts regarding medical insights on LASIK surgery across Twitter users. In our research, the LSTM reached an accuracy of 79.1% on the proposed data set. Throughout the representation of sentiments using LIME, it demonstrated accurate results regarding how specific words contributed to the overall sentiment polarity classification. Furthermore, we compared the word count with the probability weights given across the examples, in order to further validate the LIME results in the context of ASA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.