Due to the excessive demand to desalinate seawater to satisfy the domestic need in Qatar, it was needed to develop safe and cost effective desalination processes with the consideration of stringent regulation for water quality production and wastewater/brine discharge quality. The direct disposal of brines to the environment raised potential negative impact to the aquatic system and therefore the best practice is to minimize the volume of brine production and reuse it for beneficiary application. Several brine-dewatering techniques include both evaporative and non-evaporative approaches, which are capable to dewater high salinity brines with 50-350 g/L of total dissolved solids (TDS). The commonly adopted technology for dewatering brine is mechanical vapor compression that is known for its significant energy consumption up to 25 kWh/m3 of produced water for 50% of water recovery1. Non-evaporative membrane base technologies are a promising approach to dewater brines with minimum energy usage. Osmotically assisted reverse osmosis (OARO) is an advance membrane based technology for energy efficient and high recovery desalination of saline brine. OARO differ from reverse osmosis (RO) by adding saline sweep on permeate side to reduce osmotic pressure difference across the membrane to generate more water flux. The ongoing research work are based on mathematical/numerical approach that focuses on finding the optimum OARO configuration, inlet hydraulic pressure to avoid membrane burst and cost analysis. However, most of these studies are conducted by considering ideal conditions. In this study, an algorithm for simulating OARO process based on MATLAB and Aspen Plus to model membrane calculation and to design process configuration is considered to the effect of concentration polarization (CP) and reverse solute flux (RSF). The objective is to study the effect of inlet feed concentration and flowrate, sweep concentration and flowrate, inlet hydraulic pressure, number of stages, membrane size and characteristics and module configuration flow. In addition, technical economic analysis to evaluate the economic feasibility of OARO process. The stopping criteria of this model is the quality of water permeating at the feasible operating conditions and the cost. This model demonstrated high potential simulating OARO process to be used as a palate form for the user to predict the behavior of the process by varying operating conditions to desired outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.